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EXECUTIVE SUMMARY 

 

This report constitutes the SimCardioTest WP5 Deliverable D5.5 due in June 2025 (M54) on 

advanced data science for in-silico trials. This report is organized in three main sections, each one 

related to a specific use case and addressing a specific scientific question, from sensitivity analysis 

and model reduction to biomarker extraction, risk stratification and phenotyping. A general 

Introduction and Conclusions sections are included to provide a unified overview on the challenges 

tackled and the remaining open questions and perspectives in the field. All works presented here, 

realized under Task 5.6 (M24-M54), concerns the development and application of statistical and 

machine learning-based approaches designed to enhance the use of in-silico models and in-silico 

generated data, thus providing scientific evidence for their usefulness and relevance in supporting 

clinical-decision making. 

 



1. Introduction 

Work Package 5 (WP5) has two main objectives: (i) to conduct in-silico trials across the selected 

use cases and evaluate the simulation results against acquired data; and (ii) to develop and apply 

advanced statistical and machine learning (ML) methodologies to extract deeper insights from the 

simulations, with the potential to discover novel informative biomarkers. Results related to objective 

(i) have been presented in deliverables D5.1–D5.4. The present report focuses on objective (ii), and 

details the research outcomes developed under Task 5.6 (T5.6), Advanced Data Science for 

Biomarker Discovery. T5.6 consolidates the expertise of the consortium partners (INRIA, Universty 

of Bordeaux -UBx, Universidad Pompeu Fabra -UPF, Universitat Politechnica de Valencia - UPV) to 

explore modern data science methods for more robust and insightful analysis of in-silico data. 

This includes, for instance, the use unsupervised machine learning (ML) techniques—such as 

multiple kernel learning and variational autoencoders—to identify latent representations that support 

phenotyping and risk assessment, while enabling the integration of in-silico features and providing 

evidence on the utility of simulations for decision support and personalized medicine. In addition, 

we investigate sensitivity analysis approaches tailored to quantify the impact of parameters in highly 

complex models, and apply causal discovery techniques for robust feature selection.  

 

Overall, the report is organized as follows. Section 2 presents two different approaches developed 

within the consortium (UBx and INRIA being the main contributors for these two studies, 

respectively) for performing sensitivity analysis of highly complex mathematical models, related to 

Use Case 1 (UC1). Section 3 describes a study (realized by UPF) in which multi-domain data—

including clinical, morphological and in-silico hemodynamic features—are jointly analyzed using 

unsupervised ML to identify phenotypes associated with cardioembolic thrombus, relevant to UC2. 

Finally, Section 4 reports on two works (led by INRIA in collaboration with UPV) which address the 

characterization and assessment of drug-induced Torsade-de-Pointes (UC3). These studies employ 

causal learning-based techniques, either for performing feature selection, or for the construction of 

an informative latent space using unsupervised multimodal ML. Section 5 summarizes the main 

results presented here, and concludes the report. 

2. Sensitivity analysis for electromechanical models 

For the last couple of decades, cardiac modeling has been shown to be a useful and reliable tool to 

study cardiac function in healthy and under arrhythmia conditions [1], in the context of cardiac 

resynchronization therapy [2], to investigate mechanoelectrical feedback in healthy and left bundle 

branch block [3] as well as to elucidate the effect of fiber organization in cardiac output [4]. The 

emergence of advanced imaging technologies (e.g., high resolution Computed Tomography (CT), 

photon counting CT, high resolution cardiac Magnetic Resonance Imaging (MRI)) has considerably 

increased the availability of data to better characterize cardiac functions. From one side, this can 

allow models to reach a higher level of realism and details hence improved accuracy. From the other 

side, this is done at the cost of an increasing model complexity due to the need to integrate a greater 

number of parameters. Consequently, investigating the interplay between the model parameters, 

and understanding their impact on the main model outputs of interest, represent a relevant but 

complex and challenging task: this motivates the need for reliable approaches to sensitivity analysis 

[5]. 
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We distinguish between local sensitivity analysis (LSA) and global sensitivity analysis (GSA).  LSA’s 

objective is to assess the effects on model outputs upon small perturbations of one parameter at a 

time around a nominal parameter value. Besides the advantage of being computationally efficient 

and easy to interpret, LSA only partially answers our initial question, and is unable to explain the 

effect of the simultaneous variation of several input parameters, especially in highly nonlinear 

models. On the other hand, GSA seeks to explore the input parameters space in a more 

comprehensive way, and quantify the input parameter importance based on a characterization of 

the resulting output response surface. For this reason, global approaches for quantitative and 

model-free sensitivity analysis may be preferred [6], in order to manage the effect of each parameter 

and their interaction. 

2.1 Goal-oriented sensitivity analysis of a model of an artificial pacemaker  

2.1.1 Objectives 

The computational model used to perform in-silico trials of a pacemaker lead solves complex partial 

differential equations on a three-dimensional (3D) mesh. Its high computational cost prevents from 

performing a global sensitivity analysis to determine which of its input parameters may produce high 

uncertainty on the result, and can be calibrated from experimental data acquired during the project. 

To this aim, we developed a surrogate model without spatial dimension (0D), which can produce 

results at a significantly reduced cost, and can be used in statistical studies. In order to evaluate the 

sensitivity of the 3D model to its parameters, we have to proceed in two steps: 

1. Perform the sensitivity analysis on the 0D model with respect to its own input parameters, 

some of which being different from the 3D model. 

2. Build a mapping between the 3D and 0D parameters to add to the analysis the transfer of 

uncertainty from one set of parameters to the other. 

In this document, we report the results of the first step, which were obtained during the M42-M54 

period. These results were obtained in two phases. First, we performed a GSA using the theory of 

Sobol indices, for a large set of input and output quantities related to the question of interest 

determined in the V&V process (deliverables D6.1 and D6.2). It was used to determine the major 

output of interest, and most influential inputs. Second, we refined the GSA following a techniques of 

design optimization and uncertainty, from [7]. The results from the Sobol analysis have been 

published in [8]. 

2.1.2 Methodology 

The 0D model 

The 0D model, developed during the PhD thesis of V. Pannetier and presented at the conference 

FIMH2025 [9], computes the transmembrane voltage (TMV) of cell membranes excited by a 

pacemaker lead. This quantity is used to determine whether or not an action potential was triggered 

by the pacemaker, which then allows to generate the so-called Lapicque curves that are the output 

of the in-silico trial. 
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The 0D model represents the pacemaker device, the cardiac tissue and the contact between them 

on the electrodes as an electric circuit (Figure 1). Cell membranes are represented by non-linear 

current generators that depend on the TMVs Vmi, i=1,2. 

The parameters of the stimulation device (Cets, Cts, Rrec, Rblock, Rint, Rw,ring, Rw,tip) are considered 

uncertain in the first step. This is due to the fact that two types of pacing devices were considered, 

the BOREA pacemaker system for which the values were known, and a commercial PSA (Pulse 

System Analyzer) for which the values were uncertain, and obtained by experimental 

characterization. Afterwards, they were fixed, since their influence on the output were proved less 

important than the other modeling parameters. 

 

Figure 1. Electric circuit of the 0D bipolar pacemaker model. The part corresponding to the device is drawn in 

black, the cardiac tissue in red, and the contacts between them in blue. Diamonds indicate where the current 

are scaled by the surface factor Sm. The parameters of the black part and Ge, Gi, Sm (in red) are defined in the 

text and considered uncertain. The contact parameters Rtip,ring, Ctip,ring (in blue) have been calibrated (see 

D2.3), and the ionic parameters Cm, Iion1,2 (in red) are taken from the literature. 

The membrane parameters Cm and those included in the ionic currents Iion,i are taken from the 

literature. 

Only seven parameters remain, related to the bio-electrode contact, and the biological tissue: 

• Cring, Rring, Ctip and Rtip are part of the model of the bio-electric contact impedance between the 

tissue and the pacemaker electrodes (called ring and tip). They were first calibrated with data 

from bench experiments where the electrodes were placed in a saline bath [10]. However, we 

suppose that the contact with a different medium can change significantly their value.  

• Ge, Gi are surrogate parameters for the conductivity of the tissue, which is represented in 3D 

by a tensorial conductivity oriented along the myocardial fibers. Ge and Gi correspond to the 

equivalent conductance of the medium through which current flows. 

• Sm is a scaling parameter that makes the units compatible between the ionic models 

(expressed in units per cm²) and the currents in ampere delivered by the device. It 

corresponds to the total surface (in cm²) of cell membrane through which the current passes. 

We used a first guess for Sm, Gi and Ge by considering a stimulated volume of 2 mm3 and a cylindrical 

shape of cells with a 100 µm length and 10 µm diameter. However, these estimations are highly 

uncertain. For this reason, we will rather conduct the sensitivity analysis on the logarithm of all 

parameters, rather than their absolute value, as their order of magnitude is uncertain. 
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For a fixed amplitude A (in volt), and duration d (in ms) of stimulation, we use our in-house CirCE 

software to compute the TMVs Vm1 and Vm2 as illustrated in Figure 2. These voltages depend on 

time, and can have either the shape of an action potential, when there is capture, or close to their 

baseline when there is no capture, i.e. if the amplitude and duration of the stimulation were large 

enough to trigger the action potential. 

In the first step of the analysis [8], we computed the total order Sobol indices of 7 output features 

for each of the paced TMVs, namely: 

• the average of (Vmi -V0) i=1,2 over time, V0 being the baseline of Vmi; 

• the min and max values of Vmi; 

• the last value of Vmi in the time frame; 

• the min and the max of the time derivative dVmi/dt; 

• the APD50 value. 

We also computed the same 7 features on the voltage measured between the tip and ring electrodes 

(the possible electric measure during ex-vivo experiments, Vmeas on Figure 1). The Sobol indices were 

computed with the SALib Python library. 

Based on results of this first analysis, we selected the average of (Vm1 -V0) over the last stimulation 

period as the best quantity to discriminate between capture and no capture. 

 

 

Figure 2. Transmembrane voltage Vm1 (red) and Vm2 (blue) from the 0D model, for a capturing stimulation (left), 

and a non-capturing one (right). 

 

When running computations for various amplitude-duration couples, we can perform a threshold 

search which is similar to the experimental procedure, as shown in Figure 3. This search was 

conducted while using the reference value of the parameters to study and calibrate (Table 1). 

https://carmen.gitlabpages.inria.fr/circe/
https://carmen.gitlabpages.inria.fr/circe/
https://salib.readthedocs.io/
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Figure 3. Threshold search performed with the 0D model with parameters from Table 1. Green circles represent 

absence of capture, while yellow circles correspond to a regular action potential. The Lapicque curve should be 

located between the green and yellow circles. Voltages and durations are those that the device can deliver. 

 

Table 1. Reference value for the 7 parameters of the 0D model (see Figure 1), with t = RC. 

Sm(cm2) Ge(mS/cm2) Gi(mS/cm2) Rring(kOhm) tring(s) Rtip(kOhm) ttip(s) 

40 0.5 500 2 37.48 0.03 0.1665 

Cets  

(microF) 

Cts 

(microF) 

Rint 

(kOhm) 

Rpulse 

(kOhm) 

   

9.36 10.62 0.018 0.007    

 

Local Sensitivity Analysis 

In this part, we consider a fixed stimulation duration d, and study the influence of the 0D model 

parameters X=(Sm,Ge,Gi,Rring,tring,Rtip,ttip) on the minimum amplitude A which triggers an action 

potential. We then modify the value of a parameter Xi by ±20 %. For each modified parameter Xi
±, we 

define the local sensitivity index SIi
± and SIi as 

, 

where Amean and Xmean are the mean values of the amplitudes and parameter Xi, respectively. 

 

Global Sensitivity Analysis 

Instead of centering the sensitivity analysis around a single reference set of parameters, we now 

sample the whole parameter space, which is determined by choosing a search interval for each 

parameter. We consider each parameter as a random variable, which takes values in the intervals 

given in Table 2. In the first step, 786 432 evaluations of the model were used for the analysis (Sobol 
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indices), and in the second step, 1 024 samples were computed (the parameter space is of 

dimension 7 instead of 11). 

Table 2. Search interval for each parameter. We actually sample the logarithm of the parameter in these intervals. 

Sm 

(cm2) 

Ge 

(mS/cm2) 

Gi 

(mS/cm2) 

Rring 

(kOhm) 

tring 

(s) 

Rtip 

(kOhm) 

ttip 

(s) 

[0.1, 103] [10-4, 102] [10-4, 102] [10-4, 103] [10-3, 102] [10-4, 103] [10-3, 102] 

Cets  

(microF) 

Cts 

(microF) 

Rint 

(kOhm) 

Rpulse 

(kOhm) 

   

[10-2, 103] [10-2, 103] [10-4, 10] [10-4, 10]    

We noticed that the 0D model produces results for the average of Vm - V0 that are bimodal: on the 

1024 model evaluations at step 2, 83% of the simulations resulted in no capture with a value of the 

average of Vm - V0 that is close to 0, the remaining 17% lead to TMV averages which are distributed 

around a positive value near 30 mV. Using variance-based techniques such as Sobol indices is not 

appropriate for such a model, since the average and variance around the average have no real 

meaning for bimodal distributions. This is why, in a second step, we rather used goal-oriented 

sensitivity analysis techniques [7]. 

To this aim, we reformulated the question of interest as: given an amplitude A and duration d of 

stimulation, what is the probability of capture with respect to the distributed parameters? 

We used the Kolmogorov-Smirnov test (KST) to quantify the influence of the parameters on the 

output. This statistical test allows to compare two distributions by measuring the maximum 

Kolmogorov-Smirnov distance between them. In our case, for each couple (A,d), the initial 

distribution is the sampling of the parameters itself, which is close to uniform in log space. We 

compare it to the distribution of the parameters in which we have excluded the sets that did not 

produce a capture. The KST is then applied to evaluate the distance between the two distributions. 

A large distance means that the parameters have a significant effect on the output, hence on the 

probability of capture. 

 

2.1.3 Results and conclusions 

Local Sensitivity Analysis 

On Figure 4, we show the resulting Lapicque curves when varying a single parameter of the 0D model 

by ±20 %. We can already see qualitatively that the parameters Sm and Ge have the largest influence. 

This is confirmed by the indices SI which were computed for several durations d, and are reported 

in Figure 5. 
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Figure 4. Comparison between Lapicque curves computed with the 0D model, while modifying each parameter by 

±20 %, one at a time. Values in parentheses are the reference value of each parameter. 

 

 

Figure 5. Local sensitivity indices SIi for different stimulation durations (d). 

 

Global Sensitivity Analysis 

Over the 786 432 model evaluations from the first step, the simulation failed for 2% of them due to 

physically incompatible values. The evaluation of these failed samples is replaced by the average 

evaluation of those remaining during the analysis of the Sobol indices. The results are shown on 

Figure 6. 
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Figure 6. Results of total order indices of Sobol analysis on several outputs features on 786 432 samples. The 

three top blocks report the indices for observable quantities derived from Vm1, Vm2 and Vmeas respectively. The 

lower block is dedicated to L2 relative difference between the model and experimental data. 

The analysis shows a strong influence of the tissue parameters (S, Gi, Ge) on the various 

characteristics of the TMVs, particularly for the first membrane Vm1. The capacitance value Cets has 

little influence on these outputs. Additionally, we can also note the parameters that are not 

identifiable from the experimental data, such as the capacitance Cets and the two resistances of the 

pacemaker circuit Rpulse and Rint. In addition, the average of (Vm1 -V0) appeared to be the best 

determinant of capture, and not influenced either by the second capacitance Cts. For these reasons, 

the second step of the GSA was performed with only 7 uncertain parameters, after discarding (Cts, 

Cets, Rpulse, Rint). 

In the second step, computations of the 1024 outputs of the model resulted in a numerical error in 

7% of the cases, due to a physical incompatibility of the parameters with the model, or lack of 

robustness of the numerical solver. Specific solvers for ionic solvers would be needed to address 

this issue. 

Figure 6 displays the capture probability map in the amplitude-duration plane. In Figure 7, we plot 

the KST results at different amplitudes and durations. This analysis confirms that the contact 
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parameters Rring, tring, Rtip and ttip have a lesser influence on the capture results than the 3 parameters 

S, Ge and Gi, that are specific to the 0D model. We can also observe that the influence is larger in a 

region around the position of the reference Lapicque curve. This shows that there is a need to 

accurately determine the 0D parameters, but also confirms that a calibration is possible, since the 

parameters seem actually identifiable. Additionally, this result reinforces the need to characterize 

the relationship between parameters of the 3D and 0D models as much as possible. 

 

Figure 7. Capture probability in the amplitude-duration space. Red lines are isolines of probability 

10%, 30% and 40%. 

 

 

Figure 8. Kolmogorov-Smirnov distance between sampled parameter distributions and parameters of 

capturing stimulations, for several values of stimulation amplitude and duration. 

 



2.2  Sensitivity analysis through causal discovery 

2.2.1 Objectives 

We consider a fast electromechanical model [11] and two main outputs of interest, namely the 

ejection fraction (EF), defined as the ratio of stroke volume to the end diastolic volume, and the 

maximum change of pressure in the left ventricular cavity (max(dP/dt)), which is used in the context 

of cardiac resynchronization therapy to measure acute hemodynamic response to varying pacing 

parameters and lead locations. 

The high complexity of the considered electromechanical model requires the application of 

advanced sensitivity analysis methods to deal with potential non-linearities, interactions between 

factors and discontinuities. This in turn requires a large number of model simulations, resulting in 

high computational costs and time. To address this challenge, we propose an alternative approach 

based on causality to perform global sensitivity analysis, and investigate the interrelationships 

among input parameters and the main outputs of interest. This work has been published and 

presented at FIMH 2025 [12]. 

2.2.2 Methodology 

The electromechanical model 

We consider a fast electromechanical model based on the work of Desrues et. al. [11]. The action 

potential propagation is computed using a fast-marching method and by solving the anisotropic 

Eikonal-Diffusion equation (ED) for each mesh vertex. The stress profile (SP) in the mechanical 

model is defined using an analytical formulation, consisting of two Kumaraswamy cumulative 

distributions, one for the contraction and a second one accounting for the active relaxation: 

 

 

Further, the heart is described as a passive isotropic Mooney-Rivlin material with corresponding 

strain energy function given by: 
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Finally, we couple a hemodynamic model implementing the four phases of the cardiac cycle (filling, 

isovolumetric contraction, ejection, isovolumetric relaxation) and use the three-element Windkessel 

model to compute the arterial pressures: 

 

 

Global sensitivity analysis and our causality-based approach 

Global sensitivity analysis (GSA) methods can be broadly classified into four main categories: 

variance-based methods, derivative-based methods, density-based methods, and feature-additive 

methods [5]. Briefly, variance-based methods quantify the contribution of each input variable to the 

overall output variance; derivative-based methods assess sensitivity by measuring output changes 

using gradients; density-based methods analyze the variations in the probability distribution of 

outputs; while feature-additive methods decompose the model output into additive components to 

evaluate the impact of each input separately. For benchmarking purposes, we will compare our 

approach against two classical GSA methods: Pawn [13], a density-based GSA method, and Sobol 

[14], a widely used variance-based GSA method. For both methods we use the Python 

implementation available in the SALib package.  

 

We propose to tackle the GSA problem from a causal perspective, and specifically using causal 

discovery. The aim of causal discovery [15] is to uncover causal relationships among a set of 

observed variables, which can be graphically represented through Directed Acyclic Graphs (DAGs). 

In a DAG, variables are represented by nodes, and the causal directions are encoded through directed 

edges, whose associated weights provide the strength of the influence of one variable on another 

one following the causal paths; acyclicity means that there is no cycle, i.e., there is no directed path 

starting and ending in the same node. This graph-based representation offers a holistic overview of 

the system under study [16], and provide straightforward interpretation of the relationships between 

the considered variables.  

 

Figure 9 shows schematically our pipeline to perform causality-based GSA. Firstly, the input model 

parameters are sampled in their respective ranges through Latin Hypercube Sampling (LHS) and the 

model outputs of interest are computed for each sampled parameters’ combination by running the 

considered electromechanical model (more details about the simulations will follow below). Causal 

discovery is then deployed on the dataset of model parameters and outputs: the learned causal 

graph and the information contained therein quantify the effect of the parameters’ perturbations 

over the selected outputs. In particular, the causal weights define our causality-based sensitivity 

indices. It is worth noticing that prior knowledge about the relationships between model parameters 

and outputs can eventually be incorporated in the causal discovery phase, if available, to facilitate 

the estimation of the corresponding weighted causal graph. In order to independently validate the 

causal graph and its sensitivity interpretation, we additionally performed classification using 

classical machine learning approaches.  

https://salib.readthedocs.io/en/latest/
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Figure 9. Graphical pipeline of causality-based global sensitivity analysis. 

 

Of note, our causality-based sensitivity indices are not forced to be positive, as opposed to other 

classical approaches. Besides being an added value of our approach, since the sign of the causal 

weights can provide additional relevant information to further interpret the mutual relationships 

between model parameters and outputs, when comparing our results to the benchmark we will use 

the absolute values of the causality-based sensitivity indices, which denotes the absolute causal 

strength. In order to investigate the stability of the obtained results, for both the causal weights and 

the Pawn sensitivity indices we compute the mean values over 5-fold cross-validation. Concerning 

Sobol, to adhere to the sampling scheme assumption proposed by Slatelli et al. [17] (and deal with 

the limited number of available model simulations), we choose to repeat the Sobol analysis 10 times 

by randomly removing each time 8 simulations among the 200 available, and reported the average 

values, rather than performing the 5-fold cross-validation scheme.  

 

Causal Discovery through DierctLiNGAM 

We choose to rely on Linear non-Gaussian Acyclic models [18] to solve the task of discovering the 

causal graph relating model parameters and outputs (our observed variables, and the nodes of the 

searched DAG). LiNGAM assumes that the functional dependencies of each cause on its effects are 

linear, with associated additive independent and centered non-Gaussian error terms. Formally, let 

𝑋 = {𝑥𝑛}𝑛 our dataset, where 𝑥𝑖 , 𝑖 = 1, … , 𝑛, is a vector containing the observed values of the 𝑖-th 

variable of interest (here, either a model parameter or a model output). The generating process for 

each 𝑥𝑖 ∈ 𝑋 writes:  

𝑥𝑖 = ∑ 𝑏𝑗𝑖

𝑥𝑗∈Pai

𝑥𝑗 + 𝑒𝑖,    (1) 
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where Pai is the set of parents of  𝑥𝑖 (i.e., the nodes who precede 𝑥𝑖 following the sense of directed 

edges), 𝑏𝑗𝑖 defines the linear causal effect of 𝑥𝑗 → 𝑥𝑖 , and 𝑒𝑖 denotes the 

noise of 𝑥𝑖 , supposed independent from any other 𝑒𝑗 , when 𝑗 ≠ 𝑖. 

 

In order to fix the ideas, let us suppose we observe 3 variables, 𝑋1, 𝑋2, 𝑋3, 

which are causally related following the DAG in Figure 10. In this case 

we can say that 𝑋1 has no parent; 𝑋2, 𝑋3  are both children of 𝑋1 ; and 

𝑋1, 𝑋2 are both parents of 𝑋3. 

 

In a matrix form, Eq. (1) can be written as: 

𝑋 = (𝐼 − 𝐵)−1𝐸, 

where 𝐼  is the identity matrix, 𝐵  is a matrix whose 𝑖𝑗 -th element is 𝑏𝑖𝑗  and 𝐸  contains the non-

Gaussian error terms. The acyclicity assumption implies that it exists a permutation of the rows and 

columns of matrix 𝐵 so that the permuted matrix is strictly upper triangular. 𝐴: =  (𝐼 − 𝐵)−1 is called 

the mixing matrix. 

 

Under the LiNGAM assumptions, i.e., the non-Gaussianity of the independent additive noises with 

the linear causal relationships, LiNGAM parameters can be proved to be identifiable, which ensures 

the possibility to recover the true causal structure, at least from a theoretical viewpoint. The ICA-

LiNGAM estimation method then proposes to estimate 𝐴 through Independent Component Analysis 

(ICA). However, the ICA optimization, typically based on iterative search, may get trapped in a local 

optimum, leading to potential computational instability. For this reason, we decided to use 

DirectLiNGAM [19] which implements an alternative non iterative optimization scheme, hence 

providing formal guarantees for convergence, while avoiding the specification of additional 

hyperparameters which would necessitate fine tuning. Briefly, in order to estimate the mixing matrix, 

DirectLiNGAM identifies exogenous variables through independence tests from the residuals of 

pairwise regressions. Then, the impact of the identified variables is removed from the others through 

least squares regression. 
 

Setup of simulations 

We perform a total of 200 simulations of the considered electromechanical model after 

simultaneously sampling 10 model parameters of interest in their respective ranges (see Table 3), 

using a LHS scheme. Each simulation of the considered electromechanical model generates two 

output curves: left ventricular volume and pressure over time. Using these outputs, we compute the 

ejection fraction (EF), defined as the ratio of stroke volume to end-diastolic volume, and max(dP/dt), 

the maximum rate of change in left ventricular pressure. We are particularly interested in these two 

biomarkers to achieve a better model calibration and refine our knowledge on the input parameter 

ranges. 

 

The biventricular geometry used in this study comprises 7 279 nodes and 31 330 tetrahedra. To hold 

the model in space and to represent the fibrous tissue around the valves, a spring force is added to 

all nodes surrounding the valves, so that these nodes are attached to their initial position but can 

still have a displacement. The value of 9 kPa for the spring stiffness associated to these nodes has 

Figure 10. A simple DAG with 
3 variables. 
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been used and seems to be a good trade-off between the mesh deformation and the numerical 

stability by keeping the mesh attached in space. The implementation of the whole dynamical system 

has been done in the open-source framework SOFA [20]. The simulated cases where the 

mathematical model didn’t converge were excluded. Before entering each GSA pipeline, the final 

dataset of parameters and outputs have been standardized. 

 

Table 3. Parameter ranges for LHS, and corresponding units. 𝑪𝟏, 𝒌 govern the heart tissue properties; 𝒂, 𝒃, 𝒈, 𝒉 define the 

stress profile in the mechanical model; 𝑹𝒑, 𝑹𝒄, 𝑪 describe the arterial pressure; 𝝈𝟎 gives the peak contractility.  nd: non 

dimensional. 

𝐶1 

(kPa) 

𝒌  

(kPa) 

𝒂 

(nd) 

𝒃 

(nd) 

𝒈 

(nd) 

𝒉 

(nd) 

𝑹𝒑 

(kPa∙s/m3) 

[1e4, 15e4] [3e5, 3e6] [0.5,4] [1,8] [0.5,3] [1,4] [1e8,1e9] 

𝑹𝒄  

(kPa∙s/m3) 

𝐶 

(m3/kPa) 

σ0 
(kPa) 

    

[1e5,4.5e6] [9e-9,1e-8] [1e5,1.5e6]     

 

2.2.3 Results and conclusions 

Thanks to our causality-based GSA approach we have identified a subset of 6 parameters as the 

most impacting for the considered model’s outputs, over the 10 initially investigated: results are 

depicted in Figure 11 through a DAG representation. As one can extrapolate from the graph, causal 

relationships are observed from 𝑅𝑝 and 𝑘  towards EF and from 𝑎  and 𝑏  towards max(dP/dt). 

Moreover, 𝐶1 and σ0 (the peak contractility) simultaneously influence both outputs. 

 

 

Figure 11. Causal graph obtained using DirectLiNGAM for the 10 parameters described in Table 10 and the 

two output of interest, EF and max(dP/dt). 

 

The numerical values associated to the directed arrows in Figure 11 provide the mean causal 

weights across the 5 folds and the corresponding standard deviations: we interpret them as the 

causality-based sensitivity indices. To ease the lecture of the graph, nodes are colored depending 

on their role: green nodes represent the parameters which have been identified as influencing a 



 
 

EU H2020 Research & Innovation – SimCardioTest Project SC1- 7 July 2025                             

D5.5 Report on advanced data science processing of in-silico trials                        

 
 

Page 19 of 44 

 

 
 

single outcome of interest (pink rectangles), while orange nodes indicate parameters that affect 

both outcomes; the gray nodes correspond to parameters that have no causal impact over the 

outcomes of interest.  

The signs of the weights provide further insight on the expected behavior of parameter-output 

relationship. For instance, 𝜎0 is found to positively influence both outcomes (i.e., increasing 𝜎0 will 

result in higher EF and max(dP/dt)). An example of this behavior is presented in Figure 12 (top panel), 

where we show results for three different values of 𝜎0. On the opposite, the material parameter 𝐶1, 

that describes the stiffness of the tissue, negatively affect the two outputs of interest: as 𝐶1 

increases, EF and max(dP/dt) decrease. Examples are shown in Figure 12 (bottom panel). This is an 

expected behavior, as stiffer tissue is less prone to contract, thus implying a decrease in both 

biomarkers.  

 

Figure 12. Effects of the variation of the peak contractility 𝝈𝟎 (upper panel), and the tissue parameter 𝑪𝟏 

(bottom panel) over the volume and pressure curves, and the extracted EF and max(dP/dt). 

 



 
 

EU H2020 Research & Innovation – SimCardioTest Project SC1- 7 July 2025                             

D5.5 Report on advanced data science processing of in-silico trials                        

 
 

Page 20 of 44 

 

 
 

To further validate our results in terms of parameters’ selection, we perform multi-class 

classification considering the four features that have been identified as causally affecting EF (𝑅𝑝, 𝑘, 

𝐶1, 𝜎0), and four classes of cardiac activity based on EF: normal heart function (NHF), where EF 

ranges from 55% to 70%; below-normal heart function (BNF), characterized by an EF between 40% 

and 54%; possible heart failure (HF), where EF is less than 40%, indicating impaired heart function; 

and potential hypertrophic cardiomyopathy (PHC), associated with an EF exceeding 70%. In Figure 

13, we show the statistical distribution of EF values across our dataset and the classification 

performance obtained when accounting for several combinations of parameters, starting from the 

four model’s inputs parameters identified as being directly related to EF, up to the inclusion of all 

available ones. The best performance is achieved using the set revealed in the causal graph, which 

validate our parameter selection. 

 

Figure 13. a) EF classes proportions. b) Classification performances. 
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Figure 14. Sensitivity indices obtained with causal discovery (upper panel), Pawn (middle panel) and Sobol 

(bottom panel) for all input parameters included in this study (see Table 3). Left column: sensitivity of the EF 

outcome. Right column: sensitivity of the max(dP/dt) outcome. Box plots are colored following the same code 

as in Figure 11. In the first row, parameters 𝒈, 𝒉, 𝑪, 𝑹𝒄 have been excluded (no discovered causal effect). 

 

We finally compare our results to two widely used GSA approaches: Pawn and Sobol. The obtained 

sensitivity indices with all methods are illustrated in Figure 14. One can see that the Pawn method 

provides equivalent sensitivity indices for most parameters, especially for max(dP/dt). For instance, 

it identifies parameters 𝑏, ℎ and 𝐶 as having an important effect on EF: this has been invalidated by 

independently performing single sensitivity analysis, further stressing the relevance of causal 

discovery to identify the most influential model parameters. Moreover, in this specific case where 

we deal with a large parameter space, a highly non-linear model, and a limited number of simulations, 

Sobol appears to be completely unreliable to identify the key parameters and their effect over our 

outputs of interest. Indeed, the mean value of all first-order Sobol’s sensitivity indices is found to be 

zero. Finally, one can appreciate the stability of the results obtained with our method compared to 

both Pawn and Sobol. 

 

To conclude, we have proposed to leverage causal discovery to perform global sensitivity analysis 

for a fast electromechanical model and considering two clinically significant biomarkers: ejection 

fraction (EF) and maximum rate of pressure change (max(dP/dt)). The obtained causal graph 
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reveals and quantifies the impact of the most relevant model parameters on the considered outputs, 

yielding stable results compared to classical global sensitivity analysis methods, despite a limited 

number of available simulations. Besides the electromechanical model considered here to illustrate 

our method, the proposed approach is general and could be relevant on others complex models, 

where parameters have a very indirect link with simulation outputs. 

3. A digital twin approach integrating clinical, structural, and in-silico 

hemodynamic data to uncover stroke risk factors 

3.1 Objectives  

In the context of stroke, digital twins can aid clinical decision-making across multiple medical 

specialties (e.g., neurology, cardiology) by enhancing the identification of risk factors linked to 

thrombus formation. While comprehensive stroke digital twins are highly complex, those focused 

specifically on the left atrium (LA) have already demonstrated their value in treatment planning and 

in improving our understanding of left atrial blood flow patterns in atrial fibrillation patients at risk 

of ischemic stroke [21,22,23]. The advent of mechanistic models using computational fluid 

dynamics (CFD) enables the simulation of blood flow in patient-specific atrial geometries [24,25]. 

From these models in-silico hemodynamic indices can be extracted, offering valuable insights into 

atrial blood flow behavior. In the following section, we present a Digital Twin that integrates multi-

domain data to identify stroke risk factors in patients with non-valvular atrial fibrillation (AF). Clinical 

information, morphological features, and in-silico hemodynamic indices were jointly analyzed in a 

cohort of 130 patients using unsupervised machine learning to cluster them into distinct 

phenogroups based on their thrombus history. We hypothesized that integrating all available patient 

data within a digital twin framework would support the identification of phenogroups associated 

with cardioembolic thrombus. The results that will be presented here have been recently published 

in npj Digital Medicine [26].  

3.2 Methodology   

Figure 15 illustrates the proposed methodological pipeline. A Digital Twin of the left atrium was 

constructed from computed tomography (CT) images by segmenting the anatomy and extracting 

morphological parameters. A 3D mesh of the atrium was then used for patient-specific fluid 

simulations, from which hemodynamic indices—such as the number of fluid particles remaining 

inside the left atrial appendage (LAA)—were derived. Clinical data was integrated with morphological 

and hemodynamic features through the unsupervised multiple kernel learning (MKL) technique [27]. 

After applying feature selection, MKL was implemented to reduce the dimensionality of the feature 

space.  From the low-dimensional output space, patients were clustered into phenogroups based on 

clinical, morphological, and hemodynamic similarities. These phenogroups were clinically 

interpreted and labeled according to increasing thrombus history (Phenogroups 0–2). 
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Figure 15. Scheme of the methodological pipeline. AF atrial fibrillation, LA: left atrium, LAA: left atrial 

appendage, PV: pulmonary vein, MKL: multiple kernel learning algorithm, CT: computed tomography [26]. 

 

Study population 

Clinical data was provided by Hospital Haut-Lévêque (Bordeaux, France), comprising medical 

records and pre-procedural CT scans from 130 patients with non-valvular atrial fibrillation (AF) 

scheduled for a left atrial appendage occlusion (LAAO) procedure. The study population was 

severely diseased, with high risk of thromboembolic events (mean CHA2DS2-VASc score of 4). A 

history of stroke/TIAA or a detected LAA thrombus was observed in 44.6% of patients. The 

anticoagulation therapy was short-termed due to history of bleeding among patients (90.2%), with 

stroke/TIA generally occurring after its removal. 

 

Input features  

Table 4 shows the clinical, morphological and in-silico hemodynamic features extracted. The 

features are divided by input features to the unsupervised machine learning algorithm (‘Input 

features’) and features used as an additional characterization of patients once they have already 

been stratified (‘descriptive features’).  
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 - Clinical features 

History of thrombus—defined as a prior ischemic stroke or TIA, peripheral embolism, and/or LAA thrombus 

detected on preprocedural CT—was used as the label to stratify the patient population. Baseline 

characteristics, including age, body mass index (BMI), gender, hypertension, type 2 diabetes, vascular disease, 

dyslipidemia, type of atrial fibrillation (paroxysmal vs. non-paroxysmal), and HAS-BLED score, were extracted 

from electronic health records. Echocardiographic data such as left ventricular ejection fraction (LVEF) were 

also included. Heart failure was defined either by a clinical diagnosis or by reduced left ventricular systolic 

function—classified as severely reduced (LVEF ≤ 40%) or moderately reduced (LVEF 41–49%). From pre-

procedural medical records, laboratory parameters were obtained, including C-reactive protein (CRP), B-type 

natriuretic peptide (BNP), hematocrit, creatinine, glomerular filtration rate (GFR), urea, neutrophil-to-

lymphocyte ratio, mean platelet volume (MPV), platelet count (PC), troponin, and fibrinogen levels. 

 - Morphological features 

An in-house computational pipeline was used for the automatic extraction of left atrium (LA) and left atrial 

appendage (LAA) geometric parameters. This algorithm derives patient-specific LA and LAA morphological 

measurements from chest CT scans. 

 

 - In-silico hemodynamic features 

Construction of in-silico hemodynamic models.  The LA cavity was reconstructed from binary 

segmentations of CT images using semi-automatic region-growing methods available in Slicer 

4.10.1. Computational fluid dynamics (CFD) simulations were performed using the ANSYS Fluent 

Solver 19.2 (ANSYS Inc., United States) to solve the Navier-Stokes equations via the finite volume 

method. Blood was modeled as an incompressible Newtonian fluid with a density of 1060 kg/m³ 

and a dynamic viscosity of 0.0035 Pa·s. The pipeline described by Mill et al. [28] was followed. All 

simulation models incorporated two distinct boundary conditions (BCs): (1) a pressure inlet at the 

pulmonary veins (PVs), using a pressure waveform obtained from catheterization data of an AF 

patient in sinus rhythm; and (2) a velocity outlet at the mitral valve (MV), derived from Doppler 

echocardiography measurements collected from the study cohort. Electrocardiography recordings 

were used to determine the duration of each cardiac cycle. Furthermore, LA wall motion was 

simulated as a passive response to the longitudinal movement of the mitral valve annulus, 

employing a spring-based dynamic mesh approach. 

 

In-silico hemodynamic parameters.  Particle-based in-silico indices were derived from the CFD 

simulations to assess blood stasis in the left atrial appendage (LAA), following the methodology 

described by Mill et al. [28]. Massless tracer particles were released from the pulmonary veins, and 

their motion was governed by the simulated velocity vector fields originating from their respective 

seed locations. These particles were tracked continuously throughout the cardiac cycle. At each 

time step, 100 particles were injected—50 from each side of the left atrium (LA), uniformly 

distributed across the pulmonary veins. Two key hemodynamic indices were calculated: (1) the total 

number of particles remaining in the LAA at the end of the cardiac cycle, and (2) the particle age, 

defined as the duration a particle remains within the LA before exiting. 
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Table 4. Extracted features and their associated domains, organized into two categories: input features used for machine 

learning (ML) analysis and descriptive features used for post-ML interpretation. 

 

 

Multi-domain data integration  

 - Feature pre-processing and dimensionality reduction 

A total of 47 variables were extracted, encompassing clinical, morphological, and in-silico blood flow 

data (Table 4). Of these, 12 clinical variables contained missing values. To address this, missing 

data were imputed using the Random Forest method for mixed-type data, implemented via the 

‘missForest’ package (version 1.4) in R [29]. An initial feature selection was performed, by not 

including features with more than 30% missing values to reduce potential bias, also, features with 

bivariate Pearson correlations > 0.7 were not included. The in-silico index particle age was excluded 

from the machine learning inputs, as previous studies found no significant associations with 

thrombus formation. An unsupervised Multiple Kernel Learning (MKL) algorithm was employed 

[27]—a validated machine learning approach previously used in cardiac disease research. MKL 

integrates diverse feature types by assigning each one a dedicated Gaussian kernel, combining them 

into a unified low-dimensional representation. In this space, patients are positioned based on the 

similarity of their input features. The bandwidth of each Gaussian kernel was set to the square root 

of the number of patients (√Nₚ), averaging distances over the √Nₚ nearest neighbors. As all input 

features were continuous, Euclidean distance was used across all kernels. 

 - Clustering  

As a result, patients with similar characteristics were positioned closer together in the MKL-

transformed space, improving interpretability and enabling effective clustering. K-means++ was 

chosen for clustering due to its simplicity and efficient centroid initialization. To enhance robustness, 

each clustering run included 20 iterations with different initializations. Six separate clustering 

analyses were performed using various combinations of clinical, morphological, and hemodynamic 

features to assess the contribution of each feature set. For each analysis, the optimal number of 

clusters and dimensions was determined using a grid search based on the average silhouette score, 

calculated across both K-means++ and hierarchical clustering. The number of clusters tested 

ranged from 3 to 4, balancing granularity and sample size, while dimensionality was varied from 2 

to 5. Each analysis explored different combinations of input domains for MKL-based dimensionality 

reduction and clustering (see Table 5). 
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 - Statistics 

Continuous variables were assessed for normality using the Shapiro-Wilk test and for 

homoscedasticity with the Levene test. When the null hypothesis was rejected at a significance level 

of α = 0.05—indicating non-normality or unequal variances—the non-parametric Wilcoxon Mann-

Whitney test was used for univariate comparisons, and results were reported as median with 

interquartile range. For variables meeting parametric assumptions, the Student’s t-test was applied, 

with values expressed as mean ± standard deviation. Differences across clusters were evaluated 

using ANOVA for normally distributed data or the Kruskal-Wallis test for non-parametric data. Post-

hoc pairwise comparisons were performed using Tukey’s HSD (parametric) or Dunn’s test with 

Bonferroni correction (non-parametric). Categorical variables were analyzed using the chi-square 

test, with false discovery rate (FDR) correction applied for multiple testing. Statistical significance 

was set at p < 0.05. All analyses were conducted in R. 

Table 5. Domain-specific experiments performed with unsupervised multiple kernel learning (MKL), with different 

combinations of morphological, hemodynamic and clinical domains. 

 

3.3 Results 

The study included 130 atrial fibrillation (AF) patients with severely diseased left atria and high 

thromboembolic risk, incorporating both clinical data and medical imaging. A univariate statistical 

analysis was conducted to identify significant differences between patients with and without a 

history of thrombus. Among clinical variables, only dyslipidemia was significantly associated with 

thrombus history. Anatomically, patients with prior thrombus had larger LAA ostium dimensions and 

were more likely to have multi-lobed appendages (≥2 lobes). In terms of in-silico hemodynamics, the 

total number of LAA particles was significantly higher in the thrombus group.  Different 

combinations of input data domains were integrated using Multiple Kernel Learning (MKL) and 

analyzed through clustering techniques (see Table 5). Significant associations with thrombus 

history were identified in the clusters (phenogroups) derived from combining morphological and in-

silico hemodynamic features (Analysis 5), as well as from the integration of clinical, morphological, 

and hemodynamic data (Analysis 6). Clusters based solely on morphological features (Analysis 2) 

were also further examined to explore their relationship with modeled hemodynamic parameters. 

Across all analyses, the configuration with three clusters in a two-dimensional space yielded the 

highest silhouette score.  

Digital twin clustering based on morphological factors. Stratifying patients based solely on left atrial 

anatomical features revealed phenogroups with significant differences in the number of in-silico 

particles retained within the LAA, reflecting varying degrees of blood flow stasis. The phenogroup 

with the highest particle retention was characterized by larger ostium dimensions, increased LA and 

LAA volumes, and a strong alignment between the left superior pulmonary vein (LSPV) and the LAA. 
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Digital twin clustering based on morphological and hemodynamic factors.  Including the number of 

in-silico LAA particles as an input feature led to the identification of phenogroups with significant 

differences in thrombus history. The phenogroup with the highest proportion of prior thrombus 

cases (64%) showed the greatest number of fluid particles inside the LAA, larger LA, LAA, and ostium 

areas, and stronger alignment between the LAA and the left superior pulmonary vein (LSPV). This 

group also exhibited less LAA bending—suggestive of non-chicken-wing morphologies—and 

elevated B-type natriuretic peptide (BNP) levels. Among all features, ostium area was the most 

predictive of phenogroup classification. Interestingly, thrombus cases within the phenogroup with 

the lowest overall thrombus prevalence were associated with a higher incidence of dyslipidemia, 

increased number of LAA fluid particles, and a steeper right superior pulmonary vein (RSPV) inflow 

angle. 

Digital twin clustering based on clinical, morphological and hemodynamic factors. Integrating clinical 

data with in-silico hemodynamic and morphological features enhanced patient stratification by 

thrombus history, identifying a phenogroup with a 70% prevalence of prior thrombus formation. The 

clustering analysis resulted in three distinct phenogroups, each with unique characteristics (Figure 

16). Phenogroup 2 (n = 30) had a significantly higher proportion of patients with a history of 

thrombus compared to Phenogroup 0 (70% vs. 33%, p = 0.016) and Phenogroup 1 (70% vs. 40%, p = 

0.03). As shown in Figure 16, this group was characterized by significantly larger left atrial (LA) 

volumes and ostium areas (though not a higher ostium area-to-LAA volume ratio), increased LAA 

anatomical complexity, greater LA sphericity, and stronger alignment between the LAA and the LSPV 

in non-chicken wing morphologies (Figures 16d and 16f). Phenogroup 2 also had the highest number 

of fluid particles retained within the LAA (Figure 16b). Figure 17a illustrates the residual particle 

distribution in the LAA for representative patients from each phenogroup, while Figure 17b 

summarizes the key clinical, anatomical, and hemodynamic characteristics defining each group. 
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Clinically, Phenogroup 2 showed the highest BNP levels, MPV/PC ratio, creatinine (gender-adjusted), 

and non-paroxysmal AF prevalence, along with lower LVEF and hematocrit (although both within 

physiological ranges). Phenogroups 0 (n = 42) and 1 (n = 58) had fewer thrombus cases and distinct 

clinical profiles (Figure 16c, 16e). Phenogroup 1 had significantly lower BNP and MPV/PC ratios 

compared to Phenogroup 2, while Phenogroup 0 differed mainly in anatomical features—smaller 

ostium area, LA sphericity, LAA volume, and reduced LAA/LSPV alignment. Within Phenogroup 2, 

Figure 16. Clustering results based on clinical, morphological, and hemodynamic features. (a) Cluster distribution showing 

patients with (red circles) and without (green circles) a history of thrombus. (b) Distribution of number of in-silico LAA 

particles by cluster. (c–f) Radar plots displaying median normalized values per cluster: (c) demographic and laboratory 

features, (d) anatomical (shape-related) markers, (e) categorical descriptive variables (shown as %), and (f) continuous 

descriptive variables.  The blue, orange, and magenta lines represent Phenogroups 0, 1, and 2, respectively. Categorical 

variables are displayed as percentages (%), and statistically significant differences (p < 0.05) are marked with an asterisk 

(*).  AF: atrial fibrillation; BMI: body mass index; BNP: B-type natriuretic peptide; CW: chicken wing; MPV: mean platelet 

volume; PC: platelet count; LVEF: left ventricular ejection fraction; LA: left atrium; LAA: left atrial appendage; LIPV: left 

inferior pulmonary vein; LSPV: left superior pulmonary vein. [26]. 
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patients without prior thrombus (n = 9) had lower LA volume, BMI, hematocrit, and hypertension 

rates, and less steep LIPV angles. Conversely, thrombus cases in Phenogroup 0 had significantly 

higher MPV. 

 

 

Figure 17. Phenogroup comparison based on clinical, morphological, and hemodynamic features. (a) Visualization of 

residual computational fluid dynamics (CFD) particles within the left atrial appendage (LAA) at the final time step (end-

systolic phase) for representative patients from each phenogroup, illustrating typical particle counts (nparticles). Black 

arrows indicate the degree of alignment between the LAA and the left superior pulmonary vein (LSPV). (b) Summary of 

the key clinical, anatomical, and hemodynamic characteristics defining the three identified phenogroups. [26]. 

 

To improve interpretability, a Random Forest classifier was trained using the cluster assignments 

as labels. Feature importance was then evaluated using Shapley Additive exPlanations (SHAP), 

which highlighted the most influential variables for phenogroup differentiation. As shown in Figure 

18, BNP, LA volume, and ostium area emerged as the top contributors, with the total number of LAA 

particles also playing a relevant role. BNP was particularly important in distinguishing Phenogroups 

0 and 1, whereas ostium area was the main driver for identifying Phenogroup 2. 
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3.4 Discussion and conclusions 

The development of left atrial digital twins is essential for advancing stroke treatment and 

prevention in patients with atrial fibrillation (AF). In this study, we integrated multi-modal data—

including demographics, blood biomarkers, and LA morphological features—with indices derived 

from computational fluid dynamics (CFD) simulations of left atrial blood flow to construct digital 

twins for a cohort of severely diseased AF patients, many of whom had a history of thrombus. We 

analyzed patient phenogroups based on various combinations of clinical, anatomical, and 

hemodynamic characteristics to uncover underlying relationships. Each phenogroup was then 

clinically interpreted, with a particular focus on the proportion of patients who had experienced 

thrombus formation. Our findings show that combining clinical, morphological, and circulatory data 

improves patient stratification based on prior thrombus formation. In conclusion, this descriptive 

study emphasizes the value of integrating clinical, morphological, and hemodynamic data to better 

understand the multifactorial drivers of thrombus formation in patients with advanced atrial 

fibrillation. By leveraging unsupervised machine learning, we demonstrate how multi-domain data 

integration can uncover distinct phenogroups and support thrombus risk stratification. Early 

identification of high-risk phenotypes—prior to left atrial appendage occlusion (LAAO)—can inform 

clinical decisions, such as intensifying monitoring or tailoring anticoagulation strategies, especially 

in patients with contraindications to oral anticoagulants. Our preliminary findings suggest that 

specific anatomical features, such as smaller ostium dimensions, atrial remodeling, LAA tortuosity, 

and certain pulmonary vein configurations (e.g., low LAA–LSPV alignment), may improve local flow 

dynamics by reducing stasis in the appendage. These morphological characteristics could offer 

protective effects even in clinically pro-thrombotic individuals. Future work should focus on refining 

this integrative framework to develop novel risk scores or predictive tools for thrombus formation. 

 

 

Figure 18. Feature importance 

derived from SHAP analysis, 

incorporating clinical, morphological, 

and hemodynamic variables. The bar 

chart presents the average absolute 

SHAP value for each input feature, 

with taller bars representing a greater 

impact on the classification of 

phenogroups. Features are listed in 

descending order of importance. 

Abbreviations: BNP:  B-type 

natriuretic peptide, BMI: body mass 

index, LA: left atrium, LAA: left atrial 

appendage, LSPV: left superior 

pulmonary vein, LVEF:  left ventricular 

ejection fraction; MPV – mean 

platelet volume; PC – platelet count. 

 



4. Causal learning for in-silico biomarkers analysis and TdP risk 

assessment 

Drug-induced Torsade-de-Pointes (TdP) is one of the most frightening drugs’ side effects, which 

can provoke ventricular fibrillation and lead to sudden death: consequently, pro-arrhythmia 

assessment is needed in the preclinical stages of drug development. TdP is closely related to 

abnormal repolarizations in single cardiac cells, hence by a prolongation of the QT interval. The 

human Ether-à-go-go-Related Gene (hERG) is responsible for the rapid component of the delayed 

rectifier current (IKr) which is one of the major repolarizing currents in the heart [30]: 

proarrhythmic risk assessment of drugs is traditionally based on the evaluation of the hERG 

channel and the measure of the delayed ventricular repolarization on the electrocardiogram 

(ECG), i.e. the QT interval prolongation [31]. This method can accurately classify high TdP-risk 

drugs through a single analytical assessment considering a unique ionic channel and exclusively 

focusing on ventricular repolarization [32]. However, it has been observed (e.g. [33]) that IKr 

blocking may be not sufficient to assess drug-induced TdP risk and is prone to produce false 

positives.  

 

The limited accuracy of strategies focusing on hERG block and QT prolongation has been at the 

basis of the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative, promoting in-silico 

simulations to improve predictions by providing a mechanistic classification [34]. 

Electrophysiological models considering the blockage of the seven ionic currents identified by 

CiPA (IKr, INa, INaL, ICaL, IK1, IKs and Ito), instead of only the main repolarizing current IKr, are used to 

compute biomarkers able to better identify torsadogenic drugs. Consequently, recent studies 

have been proposed to incorporate additional ion channels other than IKr for a more reliable drug 

safety assessment, and several ion channels’ combinations have been proposed as the most 

effective to assess drug-induced TdP risk [35,36,37].  

 

Besides ionic currents blockade, in-silico electrophysiological and mechanical biomarkers can 

provide mechanistic proarrhythmic information for TdP-risk assessment. Indeed, detailed and 

complex biophysical models have been developed to better represent myocyte activity, including 

excitation-contraction coupling, the process by which changes in membrane potential trigger 

calcium release to activate myofilaments. Therefore, drug effects on ionic currents can be 

translated from excitation to contraction. So far, multiple indices have been proposed for TdP-

risk assessment [38], most of them based on drug properties and action potential, and the latest 

increasing tendency is to combine several electrophysiological properties, including Ca-derived 

features [39,40]. Besides, instead of striving to find a single optimal predictor, the strategy of 

combining multiple features and analyzing them with machine learning tools seems promising 

[41]. 

 

Causal learning is recently attracting increasing interest in the e-medicine community as a 

powerful theoretical grounded tool to go beyond correlation-type relationships and promote 

interpretability and actionability. Indeed, the query of causality is of paramount importance in 

biomedical data analysis: assessing the causal relationships between the observed variables 

allows to improve our understanding of the tackled medical condition and better support 

decision-making. For instance, understanding the causal relationships between risk factors and 

disease can help develop effective prevention and treatment strategies and prioritize the 

https://cipaproject.org/
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available information to improve risk assessment tools. In this section we present the work done 

on the characterization and assessment of drug-induced TdP risk, combining causal learning 

and in-silico derived biomarkers. The first study [42], described in Section 4.1, concerns the 

discovery of a causal structure relating drug-induced ionic channels’ perturbations and TdP risk, 

with the objective of exploiting the obtained Bayesian causal network to infer the downstream 

impact of the ionic currents in the drug’s safety. The second study [43], described in Section 4.2, 

lies in a multichannel context, with ionic currents blockades, torsadogenic indices, and 

electrophysiological biomarkers being three distinct channels, and aims at identifying between-

channels causal relationships at a high level through the definition of a channel-specific latent 

representation. The objective is to effectively combine the different sources of information 

(channels) and achieve a more informative TdP-risk characterization. 

4.1 Linear non-Gaussian acyclic model for ion channel blockade 

4.1.1 Objectives 

Discovering causal relationships between drug-induced ionic channels’ perturbations could shed 

new light on the underlying mechanisms leading to TdP, and drive variable selection to improve TdP-

risk assessment. This can be achieved through causal discovery, a branch of causal research whose 

aim is to learn the cause-effect relationships from data, which can be typically represented through 

Directed Acyclic Graphs (DAGs), a graph where nodes denote variables at hand, directed edges the 

causal relationships relating them, and which does not present any cycle (no pattern starting and 

ending in the same node).  

Among classical existing methods for solving the task of learning such DAGs [15], we propose to 

apply the causal discovery method ICA-Linear Non-Gaussian Acyclic Model (ICA-LiNGAM) to 

uncover the relationships across the 7 ion channels identified by the Comprehensive in vitro 

Proarrhythmia Assay (CiPA) initiative as potentially related to the induction of TdP: IKr, INa, INaL, ICaL, 

IK1, IKs and Ito. The obtained Bayesian causal network can be then explored to infer the downstream 

impact of the ionic currents in the drug’s safety label. We further assess the relevance of our 

causality-based selection of ion channels by independently performing binary drug risk classification. 

4.1.2 Methodology 

We briefly recall here the assumptions and properties of a Linear non-Gaussian Acyclic Model 

(LiNGAM) [18] (already described in Section 2.2 of this deliverable). LiNGAM assumes that the 

causal relationships between variables can be represented by means of a directed acyclic graph 

(DAG) where the causal functions between each variable and its parents’ nodes (i.e., the variables 

that causally precede it) are linear, and the error term associated to each variable follows a non-

Gaussian distribution. Under these assumptions the theoretical identifiability of the model can be 

ensured. Denoting 𝑋 the matrix of observations for each variable, then: 

𝑋 = (𝐼 − 𝐵)−1𝐸, 

where 𝐼 is the identity matrix, 𝐵 is a matrix whose 𝑖𝑗-th element provides the strength of the linear 

causal relationship of the 𝑗-the variable over the 𝑖-th one, and 𝐸 contains the non-Gaussian error 

terms. In order to estimate the mixing matrix 𝐴: =  (𝐼 − 𝐵)−1 , we use DirectLiNGAM [19] a well-

established method for the estimation of LiNGAM models. DirectLiNGAM is based on Independent 
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Component Analysis (ICA) and implements a direct non-iterative optimization scheme, which 

provides formal convergence guarantees.  

We consider a total of 109 drugs from CredibleMeds with known torsadogenic risk (37 with known 

risk, 14 with possible risk, 13 with conditional risk and 45 with no proven risk). For every drug, we 

consider two pharmacological data: the IC50 for each of the seven ionic currents that have been 

proven to be potential for TdP induction (IKr, INa, INaL, ICaL, IK1, IKs, Ito), and the effective free therapeutic 

plasma concentration (EFTPC), defined as the drug concentration in the plasma required to produce 

the desired therapeutic effect in the body. This information is combined to define the ion channels 

blocked fraction, here denoted by BfIon:  

BfIon = [1 + (
IC50𝐼𝑜𝑛

EFTPC
)

ℎ
]

−1

, 

where h denotes the Hill coefficient, the number of drug molecules assumed to be sufficient to block 

an ion channel.  

DirectLiNGAM is applied on the ion channels blocked fractions for the seven considered ionic 

currents; an extra binarized Label node (i.e., drugs of confirmed or possible TdP-risk are labelled as 

unsafe, and drugs with conditionally or no proven TdP risk as safe) is included as well to investigate 

the relationships of the blockade parameters with the known proarrhythmic risk. We implemented a 

5-fold cross-validation over the 109 drugs and keep any directed arrow that was discovered at least 

on 2 folds.  

We further use the obtained causal graph to inform about variable selection for TdP risk 

classification. Specifically, the nodes which appear as being consistently associated to the Label 

node were used as input of classical machine learning (ML) models to perform an independent 

binary classification of the considered 109 drugs. In particular, two classical ML classifiers were 

used: RandomForest and K-Nearest-Neighbors, whose prescriptions were finally combined through 

a majority voting classifier [44]. A 5-fold cross-validation was performed as well for the classification 

task. 

4.1.3 Results and conclusions 

In Figure 19 we show the causal graph obtained by applying DirectLiNGAM to the ion channels 

blocked fractions for the seven considered ionic currents: the arrow thickness represents the 

number of occurrences of the causal arrows over the 5 folds. One can see that the Kr channel is 

systemically identified as a direct cause leading to the drug label, in accordance with the established 

role it plays for repolarization. Also, ICaL and INaL ionic currents appear both as directly affecting the 

drug label, even if with a milder relevance with respect to IKr. Despite the fact that fast Na channel 

is not affecting the node label directly, it still plays an important and central role since it appears to 

be causally related to IKr, ICaL, and INaL ion currents. 

 

Our causality-based results where further confirmed by performing an independent binary 

classification of the 109 drugs used for this study. In Figure 20 we present the accuracy and 

specificity scores for the ion channels combinations revealed by the obtained causal graph (Figure 

19), starting from the most stably identified parent of the label node, IKr, up to its farthest ancestors. 

 

https://www.crediblemeds.org/
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Figure 19. Causal graph obtained relating the blocked fractions for the seven considered ionic channels (round 

nodes) and the TdP risk label (square node), through DirectLiNGAM. We highlight the nodes hierarchy in relation to 

the target “Label” node, by coloring nodes from red (directed parents) to white (no directed path). 

 

 

 

Figure 20. Accuracy and specificity for drug-induced TdP risk classification based on the combinations of 

ions as discovered by DirectLiNGAM 
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The combination of the 3 ions identified through DirectLiNGAM, IKr, ICaL, INaL, maximizes the 

classification accuracy and specificity, while a progressive degradation of both metrics is observed 

when other channels are increasingly added, indicating that the causal graph has been effective in 

identifying the main parameters which directly inform on the drug safety classification. 

 

Table 6.  Mean values of the AUC, accuracy, sensitivity and specificity of classification based on the ion channels selected 

with DirectLiNGAM compared to other state-of-the-art methods which use ion channels for proarrhythmic risk 

classification. 

Ion Combination AUC Accuracy Specificity Sensitivity Ref. 

IKr, ICaL, INa 0.91 0.91 0.88 0.87 [36] 

IKr, ICaL, INa NA 0.87 0.73 0.89 [37] 

IKr, ICaL, INaL 0.94 0.94 0.92 0.95 Ours 

 

Table 6 finally summarizes the mean performances of our causality-based classifications with 

respect to some state-of-the-art results [36,37]. Our ion-combination selection shows the best mean 

AUC and specificity scores, outperforming the other methods.  

 

These results emphasize the importance of taking into consideration ion currents ICaL and INaL in 

addition to IKr to improve drug induced TdP-risk classification, and highlights the relevance of a 

causal discovery approach to infer ion channels selection for the drug-induced TdP risk. Our results 

are consistent with previous works (e.g., [45]) where the authors showed the crucial role of IKr, ICaL 

and INaL in the computation of in-silico arrhythmogenic biomarkers proposed for TdP risk 

assessment. 

4.2 Multimodal causal VAE with in-silico electrophysiological 

biomarkers 

4.2.1 Objectives 

The increasing complexity and efficacy of electrophysiological models has motivated the analysis 

of multiple indices for TdP-risk assessment, which has shown promising. Nevertheless, the question 

of effectively combining the different sources of information (channels) to achieve a more 

informative TdP-risk assessment remains open, since the process of analyzing multi-channel data 

is challenging by nature, due to data heterogeneity and the potential presence of redundant shared 

information.  

 

We propose a novel model based on Variational Autoencoders (VAEs) [46], called Multi-Channel 

Causal Variational Autoencoder (MC2VAE), to identify the hidden (latent) causal relationships 

between ionic currents blockades, torsadogenic indices, and electrophysiological biomarkers, 

considered here as three distinct channels which can contribute to inform on drug-induced TdP risk. 

Our main hypothesis is that discovering causal relationships between the different channels could 

help our understanding of the underlying mechanisms leading to TdP, and improve its 

characterization. As a final validation, we analyze the causal latent projections of the considered 
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channels in terms of their ability to discriminate between safe and unsafe drugs (considering the 

same binarized label as done in Section 4.1). 

4.2.2 Methodology 

We consider the dataset of 109 drugs from CredibleMeds with known torsadogenic risk, as in 

Section 4.1. We perform electrophysiological cellular simulations with each drug using a modified 

version of the human endocardial ventricular O’Hara et al. model [47]. For each drug we dispose 

overall of data coming from 3 channels, denoted by I, E, T, and described below.  

• I: The drug-induced blockade of the seven most important ionic currents according to the 

CiPA initiative, computed using the simple pore block model, at the effective free therapeutic 

plasma concentration (EFTPC) [42].  

 

• E: In-silico electrophysiological biomarkers that consist of direct features from the action 

potential (APD90, APD50, Tri9050, Tri9030, qNet) and from the calcium transient signals 

(Casyst, Cadiast, CaTD90, CaTD50), including a surrogate of the electromechanical window 

(Emw = CaTD90-APD90) [41].  

 

• T: In-silico derived features that have been proposed as torsadogenic indices: 𝑇𝑥, the ratio 

between the concentration of a drug that provokes a 10% prolongation of the APD90 in 

control conditions and the EFTPC; 𝑇𝑞𝑁𝑒𝑡, the ratio between the net charge carried by the net 

current when exposed to 10 times the EFTPC with respect to the net charge in control 

conditions; and 𝑇𝑡𝑟𝑖𝑎𝑛𝑔, the ratio between Tri9030 for a drug concentration of 10 times EFTPC 

and triangulation in control conditions [45].  

A power transformation has been applied to I and a logarithmic transformation to T and E, followed 

by standardization.  

We denote by X = {I, E, T} the dataset consisting of the three channels mentioned above; 𝑋𝑖 ≔

(𝐼𝑖, 𝐸𝑖 , 𝑇𝑖) represents the dataset of the i-th drug.  

To analyze such data, we propose a method based on Variational Autoencoders (VAEs), Bayesian 

generative models which are composed of two main blocks, an encoder which projects data into a 

meaningful lower-dimensional latent space and learns its distribution, and a decoder which 

performs the inverse transformation and generate back the data in their original space form their 

latent representation. VAEs are highly flexible models, capable of adapting to a wide variety of data 

types and structures, and have already shown promise in the context of multi-channel data analysis 

[48].  

 

https://www.crediblemeds.org/
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Figure 21. The structure of MC2VAE, and its application to ionic currents blockades (I), electrophysiological 

biomarkers (E), and torsadogenic indices (T). Encoders and decoders are neural networks (in this case, simple linear 

layers) parameterized by 𝚯 and 𝚽 respectively. They’re outputs are a mean and a standard deviation (𝝁, 𝝈) of an 

estimated gaussian distribution. 𝑨𝜸 is the weighted matrix describing the linear causal dependencies between the 

latent modality-specific projections. 

 

MC2VAE is an unsupervised model, whose structure, conversely to standard VAEs, is composed of 

three main components: 1) encoding, 2) causal layer, and 3) decoding (Figure 21). Each channel is 

projected into a one-dimensional latent space ( 𝑧 ≔ (𝑧𝑚)𝑚=𝐼,𝐸,𝑇 ) through its channel-specific 

encoder, a Neural Network (NN) parameterized by Θ ≔ (𝜃𝑚)𝑚=𝐼,𝐸,𝑇. The obtained latent variables 

are fed to the causal layer. We assume independence between the drugs and a normal prior for their 

respective noise terms, 𝑝(𝑧) . Moreover, we hypothesize linear causal relationships across the 

channel-specific latent variables. These assumptions define the following latent structural causal 

model, whose learnable parameters are contained in the m-dimensional matrix 𝐴γ:  

𝑧𝑐 = 𝐴𝛾
𝑇𝑧𝑐 + 𝑧 = (𝐼 − 𝐴𝛾

𝑇)
−1

𝑧, 𝑧 ∼ 𝒩(0, 𝐼) 

(𝐴𝛾)
𝑖𝑗

 provides the strength of the causal linear relationships of the i-th latent parent variable on the 

j-th latent children variable, with i,j in {I, E, T}. 

Finally, the causal latent variables 𝑧𝑐: = (𝑧𝑐,𝑚)𝑚=𝐼,𝐸,𝑇  are fed to channel-specific decoders, NNs 

parameterized by Φ ≔ (𝜑𝑚)𝑚=𝐼,𝐸,𝑇 , for the reconstruction. 

 

To optimize the parameters of MC2VAE, we should maximize the marginal log-likelihood of X, 

ℒ(𝑋; Φ, Θ, 𝐴𝛾) , and derive the true posterior 𝑝(𝑧|𝑋)  over the latent space. Due to analytical 

intractability, we apply variational Bayes and introduce a tractable posterior 𝑞Θ(𝑧|𝑋)  which 

approximates 𝑝(𝑧|𝑋) [49]. We finally get to the following loss:  
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Of note, since we seek for directional cause-and-effect relationships among causal latent variables, 

we enforce the acyclicity of the causal graph through a penalization over term 𝐴𝛾  inspired by [50].  

All encoders and decoders consist in this work of a single linear layer. MC2VAE training is efficiently 

carried out through stochastic gradient descent using the Adam optimizer. We perform a 5-fold 

cross-validation strategy and run for each experiment 1000 epochs with an initial learning rate of 1e-

2 which allows us to reach convergence. 

4.2.3 Results and conclusions 

In Figure 21, middle panel, we show the causal graph obtained by applying MC2VAE on our 3-

channels dataset. Latent causal relationships are captured between the three channels, as 

reasonably expected. In particular, a causal relationship from the ionic currents towards 

electrophysiological biomarkers has been highlighted, which is in accordance with the fact that the 

blockade of ionic currents is used as input of the biophysical model from which these outputs are 

computed. We also noticed a bidirectional causal relationship between the electrophysiological 

biomarkers and the torsadogenic indices, suggesting a reciprocal influence between both set of 

biomarkers. We reported the mean values obtained for the 𝐴𝛾 weights over the folds, which quantify 

the strengths of each causal link. Of note, looking at the bidirectional relationship between the T and 

E channels one can note that TàE has a stronger absolute weight: by the way, if one would decide to 

privilege a posteriori one direction based on the weight, removing EàT would ensure the acyclicity of 

the final DAG.  

 

 

Figure 22. Scatter plot of all drugs after projection in 

the latent space. Unsafe drugs are in orange; safe 

drugs in purple. 
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Figure 23. Kernel density distribution of drugs for each pairwise combination of latent channels. 

 

To quantify the impact of the discovered causal graph in defining a meaningful latent representation 

of the channels, we evaluate MC2VAE’s ability to reconstruct the input data, measured through mean 

squared error (MSE) and assess that the causal learning step enables efficient reconstruction of the 

input data, providing very good reconstruction performances. Further, in Figure 22 we show the 3-

dimensional latent representation of each drug obtained by sampling 50 times from their learned 

distribution, each axis being the latent coordinate for a specific channel. Despite MC2VAE is a fully 

unsupervised method, we can clearly see the separation of the drugs in the latent space with respect 

to their known TdP risk (considered here as binary: unsafe, in orange, for known or possible TdP risk 

drugs, and safe, in purple, for the remaining categories). For the sake of clarity, we further project 

these representations in each 2D plane (Figure 23), and show two unsafe and two safe drugs – 

ibutilide (orange circle), disopyramide (orange square), loratadine (purple circle), and diltiazem 

(purple square) – as an example.  

 

Finally, we challenge our latent representation for the downstream binary classification task, and 

study the impact of an increasing number of channels to characterize drug-induced TdP risk. Figure 

24 shows that the inclusion of each of the considered channels brings additional valuable 

information for TdP risk assessment, generating evidence and a strong rational for including them 

in the analysis.  

 

 

Figure 24. Binary TdP-risk classification performance using a different number of latent channel-specific features. 
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In conclusion, thanks to MC2VAE we were able to reveals and quantifies the hidden causal 

relationships among the different sets of considered biomarkers, and helps to justify the integration 

of these three channels, as their joint causal analysis shows that they produce a much more effective 

and actionable characterization of TdP risk than if we were to consider one channel at a time. 

5. Conclusions 

Deliverable D5.5 presents a collection of works realized by the SimCardioTest consortium under 

Task 5.6 (M24-M54) on advanced data science for in-silico trials. The main results described here 

concern 1) the development of novel (unsupervised) statistical and machine learning-based 

approaches to leverage in-silico generated evidence (sometimes combined with other sources of 

information, in a multimodal framework) to gain better risk stratification, and 2) the development of 

novel pipelines to investigate the behavior of complex and highly non-linear models, needed to 

perform in-silico trials and account for high-dimensional observations. 

 

Model reduction and sensitivity analysis. The increasing complexity of cardiac models needed for 

the integration and simulation of high-dimensional observations requires the development of ad hoc 

methods to statistically analyze and control their behavior from a large parameter space. Indeed, 

classical sensitivity analysis approaches may fail to provide a reliable solution, or require a 

prohibitive amount of model simulations to capture the complex interactions between model 

parameters and outputs: the development of novel sensitivity analysis approaches tailored to 

complex high-dimensional mechanistic models is still an active field of research. One direction 

pursued within the SimCardioTest consortium proposes to tackle this problem through model 

reduction (for PDE-based models), from 3D to 0D. Despite this strategy has shown effective by 

providing reliable information for 3D model calibration, several questions remain to be addressed, 

notably how to evaluate the credibility of this analysis (which is not part of V&V40)? How can we 

establish generic methodologies to guarantee the right features of the reduction processes and 

statistical analyses? How to properly characterize the relationship between the original and reduced 

model? An alternative direction explored within the context of SimCardioTest consists in leveraging 

the probabilistic theory of causality, and establishing causal relationships between parameters and 

outputs, for instance through the performance of regressions and conditional independence tests. 

The promising results obtained so far for single-point model results encourage us to move forward 

in this direction, where additional challenges need to be addressed, for example, how can we 

account for time-varying outcomes? Which is the most appropriate choice of causal discovery 

method? 

 

Digital twins with in-silico data. The identification of risk factors of thrombus formation, and patient 

stratification into phenogroups associated with cardioembolic thrombus is essential for improving 

stroke treatment and prevention, thus supporting clinical decision-making. Nowadays, we dispose 

of mechanistic models based on computational fluid dynamics (CFD) which enable a reliable 

simulation of blood flows in patient-specific atrial geometries, from which in-silico hemodynamic 

indices can be generated. Within SimCardioTest we demonstrate the importance of integrating 

clinical, morphological, and hemodynamic data for a better understanding of the multifactorial 

drivers of thrombus formation in patients with advanced atrial fibrillation. To do that, we leverage 
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unsupervised machine learning (multiple kernel learning - MKL) to perform dimensionality reduction 

of the multidomain dataset, hence clustering in the lower-dimensional space: clusters where 

clinically interpreted, with a particular focus on the proportion of patients who had experienced 

thrombus formation. Future work should focus on the validation of the obtained phenogroups 

clusters against larger and external patient cohorts, and on the refinement of the proposed 

integrative framework, for instance by incorporating categorical variables into the analysis or by 

relying on more sophisticated mechanistic models of left atrial hemodynamics, to develop novel risk 

scores and predictive tools for thrombus formation. 

 

Causal learning in healthcare. Causal learning is a very active and rapidly evolving area of research, 

which is now attracting growing interest in the healthcare community: it aims at exploiting directed 

causal relationships between observations, going beyond traditional statistical association, and 

ultimately improving interpretability, explainability and actionability. Causal discovery is a research 

direction in causal learning whose goal is to retrieve the causal structuring underlying the data 

generating process, which ultimately leads to the observations. Classical approaches for causal 

discovery are typically well suited to deal with relatively low-dimensional data, while more recent 

attempts which couple causal discovery and machine learning techniques to cope with higher 

dimensional and complex datasets (Causal Disentangled Representation Learning - CDRL) have 

shown promising results. Within SimCardioTest we propose to take a step further and investigate 

the possibility of extending CDRL to the multimodal scenario, thus taking advantage of multiple data 

sources to better characterize a given observed phenomena (drug-induced Torsade-de-Pointes). We 

show that our CDRL strategy, fully unsupervised, were effective in building an informative latent 

representation of the original multimodal data. Several challenges arise from this first study, 

including the possibility of modeling the causal relationships at multiple levels of granularity, and 

use the estimated latent causal graph to perform inference and prediction under varying conditions. 

 

The results described in D5.5 have already been published and presented at international 

conferences: 

 

• Section 2.1: Pannetier, Valentin, et al. "Towards validation of two computational models of 

artificial pacemakers" Q. Z. Radomír Chabiniok, Functional Imaging and Modeling of the 

Heart. Springer Nature Switzerland. Available July, 27th 2025. 2025. (ref. [9]) 

• Section 2.2: Al-Ali, Safaa, et al. "Cardiac Electromechanical Model Sensitivity Analysis using 

Causal Discovery", Functional Imaging and Modeling of the Heart. Springer Nature 

Switzerland. Available July, 27th 2025. 2025. (ref. [12]) 

• Section 3: Saiz-Vivó, Marta, et al. "Digital twin integrating clinical, morphological and 

hemodynamic data to identify stroke risk factors." npj Digital Medicine 8.1 (2025): 1-14. (ref. 

[26]) 

• Section 4.1: Al-Ali, Safaa, et al. "A causal discovery approach to streamline ionic currents 

selection to improve drug-induced tdp risk assessment." 2023 Computing in Cardiology 

(CinC). Vol. 50. IEEE, 2023. (ref. [42]) 

• Section 4.2: Al-Ali, Safaa, et al. "Assessing Ionic Current Blockades and Electromechanical 
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