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EXECUTIVE SUMMARY

This report constitutes the SimCardioTest WP5 Deliverable D5.5 due in June 2025 (M54) on
advanced data science for in-silico trials. This report is organized in three main sections, each one
related to a specific use case and addressing a specific scientific question, from sensitivity analysis
and model reduction to biomarker extraction, risk stratification and phenotyping. A general
Introduction and Conclusions sections are included to provide a unified overview on the challenges
tackled and the remaining open questions and perspectives in the field. All works presented here,
realized under Task 5.6 (M24-M54), concerns the development and application of statistical and
machine learning-based approaches designed to enhance the use of in-silico models and in-silico
generated data, thus providing scientific evidence for their usefulness and relevance in supporting
clinical-decision making.



1. Introduction

Work Package 5 (WP5) has two main objectives: (i) to conduct in-silico trials across the selected
use cases and evaluate the simulation results against acquired data; and (ii) to develop and apply
advanced statistical and machine learning (ML) methodologies to extract deeper insights from the
simulations, with the potential to discover novel informative biomarkers. Results related to objective
(i) have been presented in deliverables D5.1-D5.4. The present report focuses on objective (ii), and
details the research outcomes developed under Task 5.6 (T5.6), Advanced Data Science for
Biomarker Discovery. T5.6 consolidates the expertise of the consortium partners (INRIA, Universty
of Bordeaux -UBXx, Universidad Pompeu Fabra -UPF, Universitat Politechnica de Valencia - UPV) to
explore modern data science methods for more robust and insightful analysis of in-silico data.

This includes, for instance, the use unsupervised machine learning (ML) techniques—such as
multiple kernel learning and variational autoencoders—to identify latent representations that support
phenotyping and risk assessment, while enabling the integration of in-silico features and providing
evidence on the utility of simulations for decision support and personalized medicine. In addition,
we investigate sensitivity analysis approaches tailored to quantify the impact of parameters in highly
complex models, and apply causal discovery techniques for robust feature selection.

Overall, the report is organized as follows. Section 2 presents two different approaches developed
within the consortium (UBx and INRIA being the main contributors for these two studies,
respectively) for performing sensitivity analysis of highly complex mathematical models, related to
Use Case 1 (UC1). Section 3 describes a study (realized by UPF) in which multi-domain data—
including clinical, morphological and in-silico hemodynamic features—are jointly analyzed using
unsupervised ML to identify phenotypes associated with cardioembolic thrombus, relevant to UC2.
Finally, Section 4 reports on two works (led by INRIA in collaboration with UPV) which address the
characterization and assessment of drug-induced Torsade-de-Pointes (UC3). These studies employ
causal learning-based techniques, either for performing feature selection, or for the construction of
an informative latent space using unsupervised multimodal ML. Section 5 summarizes the main
results presented here, and concludes the report.

2. Sensitivity analysis for electromechanical models

For the last couple of decades, cardiac modeling has been shown to be a useful and reliable tool to
study cardiac function in healthy and under arrhythmia conditions [1], in the context of cardiac
resynchronization therapy [2], to investigate mechanoelectrical feedback in healthy and left bundle
branch block [3] as well as to elucidate the effect of fiber organization in cardiac output [4]. The
emergence of advanced imaging technologies (e.g., high resolution Computed Tomography (CT),
photon counting CT, high resolution cardiac Magnetic Resonance Imaging (MRI)) has considerably
increased the availability of data to better characterize cardiac functions. From one side, this can
allow models to reach a higher level of realism and details hence improved accuracy. From the other
side, this is done at the cost of an increasing model complexity due to the need to integrate a greater
number of parameters. Consequently, investigating the interplay between the model parameters,
and understanding their impact on the main model outputs of interest, represent a relevant but
complex and challenging task: this motivates the need for reliable approaches to sensitivity analysis

[5].
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We distinguish between local sensitivity analysis (LSA) and global sensitivity analysis (GSA). LSA’s
objective is to assess the effects on model outputs upon small perturbations of one parameter at a
time around a nominal parameter value. Besides the advantage of being computationally efficient
and easy to interpret, LSA only partially answers our initial question, and is unable to explain the
effect of the simultaneous variation of several input parameters, especially in highly nonlinear
models. On the other hand, GSA seeks to explore the input parameters space in a more
comprehensive way, and quantify the input parameter importance based on a characterization of
the resulting output response surface. For this reason, global approaches for quantitative and
model-free sensitivity analysis may be preferred [6], in order to manage the effect of each parameter
and their interaction.

2.1Goal-oriented sensitivity analysis of a model of an artificial pacemaker
2.1.1 Objectives

The computational model used to perform in-silico trials of a pacemaker lead solves complex partial
differential equations on a three-dimensional (3D) mesh. Its high computational cost prevents from
performing a global sensitivity analysis to determine which of its input parameters may produce high
uncertainty on the result, and can be calibrated from experimental data acquired during the project.
To this aim, we developed a surrogate model without spatial dimension (0D), which can produce
results at a significantly reduced cost, and can be used in statistical studies. In order to evaluate the
sensitivity of the 3D model to its parameters, we have to proceed in two steps:

1.  Perform the sensitivity analysis on the 0D model with respect to its own input parameters,
some of which being different from the 3D model.

2.  Build a mapping between the 3D and 0D parameters to add to the analysis the transfer of
uncertainty from one set of parameters to the other.

In this document, we report the results of the first step, which were obtained during the M42-M54
period. These results were obtained in two phases. First, we performed a GSA using the theory of
Sobol indices, for a large set of input and output quantities related to the question of interest
determined in the V&V process (deliverables D6.1 and D6.2). It was used to determine the major
output of interest, and most influential inputs. Second, we refined the GSA following a techniques of
design optimization and uncertainty, from [7]. The results from the Sobol analysis have been
published in [8].

2.1.2 Methodology
The 0D model

The 0D model, developed during the PhD thesis of V. Pannetier and presented at the conference
FIMH2025 [9], computes the transmembrane voltage (TMV) of cell membranes excited by a
pacemaker lead. This quantity is used to determine whether or not an action potential was triggered
by the pacemaker, which then allows to generate the so-called Lapicque curves that are the output
of the in-silico trial.
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The 0D model represents the pacemaker device, the cardiac tissue and the contact between them
on the electrodes as an electric circuit (Figure 1). Cell membranes are represented by non-linear
current generators that depend on the TMVs Vy,;, i=1,2.

The parameters of the stimulation device (Cets, Cis, Rrec, Roviock, Rint, Rwysring, Rwiip) a@re considered
uncertain in the first step. This is due to the fact that two types of pacing devices were considered,
the BOREA pacemaker system for which the values were known, and a commercial PSA (Pulse
System Analyzer) for which the values were uncertain, and obtained by experimental
characterization. Afterwards, they were fixed, since their influence on the output were proved less
important than the other modeling parameters.
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Figure 1. Electric circuit of the 0D bipolar pacemaker model. The part corresponding to the device is drawn in
black, the cardiac tissue in red, and the contacts between them in blue. Diamonds indicate where the current
are scaled by the surface factor Sy. The parameters of the black part and Ge, G, Sm (in red) are defined in the
text and considered uncertain. The contact parameters Riip,ring, Ciipring (in blue) have been calibrated (see
D2.3), and the ionic parameters Cm, lion1,2 (in red) are taken from the literature.

The membrane parameters Cm and those included in the ionic currents lioni are taken from the
literature.

Only seven parameters remain, related to the bio-electrode contact, and the biological tissue:

e Cring, Rring, Ctipand Ryjp are part of the model of the bio-electric contact impedance between the
tissue and the pacemaker electrodes (called ring and tip). They were first calibrated with data
from bench experiments where the electrodes were placed in a saline bath [10]. However, we
suppose that the contact with a different medium can change significantly their value.

e G, Gjare surrogate parameters for the conductivity of the tissue, which is represented in 3D
by a tensorial conductivity oriented along the myocardial fibers. Ge and G; correspond to the
equivalent conductance of the medium through which current flows.

e Sp is a scaling parameter that makes the units compatible between the ionic models
(expressed in units per cm?) and the currents in ampere delivered by the device. It
corresponds to the total surface (in cm?) of cell membrane through which the current passes.

We used a first guess for Sy, Giand Ge by considering a stimulated volume of 2 mm? and a cylindrical
shape of cells with a 100 pm length and 10 pm diameter. However, these estimations are highly
uncertain. For this reason, we will rather conduct the sensitivity analysis on the logarithm of all
parameters, rather than their absolute value, as their order of magnitude is uncertain.
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For a fixed amplitude A (in volt), and duration d (in ms) of stimulation, we use our in-house CirCE
software to compute the TMVs V1 and Ve as illustrated in Figure 2. These voltages depend on
time, and can have either the shape of an action potential, when there is capture, or close to their
baseline when there is no capture, i.e. if the amplitude and duration of the stimulation were large
enough to trigger the action potential.

In the first step of the analysis [8], we computed the total order Sobol indices of 7 output features
for each of the paced TMVs, namely:

e the average of (Vmi-Vo) i=1,2 over time, Vo being the baseline of Vi;
e the min and max values of Vi

e the last value of Vi in the time frame;

e the min and the max of the time derivative dVmi/dt;

e the APD50 value.

We also computed the same 7 features on the voltage measured between the tip and ring electrodes
(the possible electric measure during ex-vivo experiments, Vmeas 0N Figure 1). The Sobol indices were
computed with the SALib Python library.

Based on results of this first analysis, we selected the average of (Vm1 -Vo) over the last stimulation
period as the best quantity to discriminate between capture and no capture.

Vpyford=1msand A =122V —— Vmiyford=1msandA =118V ——
20 F Vm4ford=1msand 4 =122V —— 20 b ) Vmdford=1msand 4 =118V
0Fr 0F
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Figure 2. Transmembrane voltage Vm; (red) and Vmz (blue) from the 0D model, for a capturing stimulation (left),
and a non-capturing one (right).

When running computations for various amplitude-duration couples, we can perform a threshold
search which is similar to the experimental procedure, as shown in Figure 3. This search was
conducted while using the reference value of the parameters to study and calibrate (Table 1).
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Figure 3. Threshold search performed with the 0D model with parameters from Table 1. Green circles represent
absence of capture, while yellow circles correspond to a regular action potential. The Lapicque curve should be
located between the green and yellow circles. Voltages and durations are those that the device can deliver.

Table 1. Reference value for the 7 parameters of the 0D model (see Figure 1), with t = RC.

Sm(cm?) Ge(mS/cm?)  Gi(mS/cm?)  Riing(kOhm) tring(S) Riip(kOhm) tip(s)
40 0.5 500 2 37.48 0.03 0.1665
Cets Cts Rint Rpulse

(microF) (microF) (kOhm) (kOhm)

9.36 10.62 0.018 0.007

Local Sensitivity Analysis

In this part, we consider a fixed stimulation duration d, and study the influence of the 0D model
parameters X=(Sm,Ge,GiRring tring,Riip,tip) on the minimum amplitude A which triggers an action
potential. We then modify the value of a parameter Xi by +20 %. For each modified parameter Xi*, we
define the local sensitivity index Sli* and Slias

S.[i . Azi - Amean
i + ’
X" — Xmean

Z

SI; = max(SI; , ST;")
where Amean and Xmean are the mean values of the amplitudes and parameter X, respectively.

Global Sensitivity Analysis

Instead of centering the sensitivity analysis around a single reference set of parameters, we now
sample the whole parameter space, which is determined by choosing a search interval for each
parameter. We consider each parameter as a random variable, which takes values in the intervals
given in Table 2. In the first step, 786 432 evaluations of the model were used for the analysis (Sobol
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indices), and in the second step, 1 024 samples were computed (the parameter space is of
dimension 7 instead of 11).

Table 2. Search interval for each parameter. We actually sample the logarithm of the parameter in these intervals.

Sm Ge Gi Rring tring Rtip ttip
(cm?) (mS/cm?) (mS/cm?) (kOhm) (s) (kOhm) (s)
[0.1,109] [104 107 [104,107] [104 107] [10%,107] [104,107] [103,107
Cets Cts Rint Rpulse
(microF) (microF) (kOhm) (kOhm)
[102 109 [102 109 [104 10] [104 10]

We noticed that the 0D model produces results for the average of Vm - Vo that are bimodal: on the
1024 model evaluations at step 2, 83% of the simulations resulted in no capture with a value of the
average of Vi - Vg that is close to 0, the remaining 17% lead to TMV averages which are distributed
around a positive value near 30 mV. Using variance-based techniques such as Sobol indices is not
appropriate for such a model, since the average and variance around the average have no real
meaning for bimodal distributions. This is why, in a second step, we rather used goal-oriented
sensitivity analysis techniques [7].

To this aim, we reformulated the question of interest as: given an amplitude A and duration d of
stimulation, what is the probability of capture with respect to the distributed parameters?

We used the Kolmogorov-Smirnov test (KST) to quantify the influence of the parameters on the
output. This statistical test allows to compare two distributions by measuring the maximum
Kolmogorov-Smirnov distance between them. In our case, for each couple (Ad), the initial
distribution is the sampling of the parameters itself, which is close to uniform in log space. We
compare it to the distribution of the parameters in which we have excluded the sets that did not
produce a capture. The KST is then applied to evaluate the distance between the two distributions.
A large distance means that the parameters have a significant effect on the output, hence on the
probability of capture.

2.1.3 Results and conclusions

Local Sensitivity Analysis
On Figure 4, we show the resulting Lapicque curves when varying a single parameter of the 0D model
by +20 %. We can already see qualitatively that the parameters Smand Ge have the largest influence.

This is confirmed by the indices SI which were computed for several durations d, and are reported
in Figure 5.
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Figure 4. Comparison between Lapicque curves computed with the 0D model, while modifying each parameter by

+20 %, one at a time. Values in parentheses are the reference value of each parameter.
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Figure 5. Local sensitivity indices Sl; for different stimulation durations (d).

Global Sensitivity Analysis

Over the 786 432 model evaluations from the first step, the simulation failed for 2% of them due to
physically incompatible values. The evaluation of these failed samples is replaced by the average
evaluation of those remaining during the analysis of the Sobol indices. The results are shown on
Figure 6.
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Figure 6. Results of total order indices of Sobol analysis on several outputs features on 786 432 samples. The
three top blocks report the indices for observable quantities derived from V1, Vimz and Vimeas respectively. The
lower block is dedicated to L2 relative difference between the model and experimental data.

The analysis shows a strong influence of the tissue parameters (S, Gi, Ge) on the various
characteristics of the TMVs, particularly for the first membrane V1. The capacitance value Ces has
little influence on these outputs. Additionally, we can also note the parameters that are not
identifiable from the experimental data, such as the capacitance Ces and the two resistances of the
pacemaker circuit Rpuse and Rine. In addition, the average of (Vm1 -Vo) appeared to be the best
determinant of capture, and not influenced either by the second capacitance Cis. For these reasons,
the second step of the GSA was performed with only 7 uncertain parameters, after discarding (Cs,
Cets. Rpulse. Rint)-

In the second step, computations of the 1024 outputs of the model resulted in a numerical error in
7% of the cases, due to a physical incompatibility of the parameters with the model, or lack of
robustness of the numerical solver. Specific solvers for ionic solvers would be needed to address
this issue.

Figure 6 displays the capture probability map in the amplitude-duration plane. In Figure 7, we plot
the KST results at different amplitudes and durations. This analysis confirms that the contact
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parameters Ruing, tring, Riip and tip have a lesser influence on the capture results than the 3 parameters
S, Ge and G;, that are specific to the 0D model. We can also observe that the influence is larger in a
region around the position of the reference Lapicque curve. This shows that there is a need to
accurately determine the OD parameters, but also confirms that a calibration is possible, since the
parameters seem actually identifiable. Additionally, this result reinforces the need to characterize

the relationship between parameters of the 3D and 0D models as much as possible.
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2.2 Sensitivity analysis through causal discovery

2.2.1 Objectives

We consider a fast electromechanical model [11] and two main outputs of interest, namely the
ejection fraction (EF), defined as the ratio of stroke volume to the end diastolic volume, and the
maximum change of pressure in the left ventricular cavity (max(dP/dt)), which is used in the context
of cardiac resynchronization therapy to measure acute hemodynamic response to varying pacing
parameters and lead locations.

The high complexity of the considered electromechanical model requires the application of
advanced sensitivity analysis methods to deal with potential non-linearities, interactions between
factors and discontinuities. This in turn requires a large number of model simulations, resulting in
high computational costs and time. To address this challenge, we propose an alternative approach
based on causality to perform global sensitivity analysis, and investigate the interrelationships
among input parameters and the main outputs of interest. This work has been published and
presented at FIMH 2025 [12].

2.2.2 Methodology

The electromechanical model

We consider a fast electromechanical model based on the work of Desrues et. al. [11]. The action
potential propagation is computed using a fast-marching method and by solving the anisotropic
Eikonal-Diffusion equation (ED) for each mesh vertex. The stress profile (SP) in the mechanical
model is defined using an analytical formulation, consisting of two Kumaraswamy cumulative
distributions, one for the contraction and a second one accounting for the active relaxation:

Profile shape during contraction Time of depolarization Action Potential Duration
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Further, the heart is described as a passive isotropic Mooney-Rivlin material with corresponding
strain energy function given by:
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Finally, we couple a hemodynamic model implementing the four phases of the cardiac cycle (filling,
isovolumetric contraction, ejection, isovolumetric relaxation) and use the three-element Windkessel
model to compute the arterial pressures:

Characteristic impedence of the aorta

[RCP = ( +.Q+R CR.Q - P
T~

Peripheral aortic resistance Aortic compliance

Global sensitivity analysis and our causality-based approach

Global sensitivity analysis (GSA) methods can be broadly classified into four main categories:
variance-based methods, derivative-based methods, density-based methods, and feature-additive
methods [5]. Briefly, variance-based methods quantify the contribution of each input variable to the
overall output variance; derivative-based methods assess sensitivity by measuring output changes
using gradients; density-based methods analyze the variations in the probability distribution of
outputs; while feature-additive methods decompose the model output into additive components to
evaluate the impact of each input separately. For benchmarking purposes, we will compare our
approach against two classical GSA methods: Pawn [13], a density-based GSA method, and Sobol
[14], a widely used variance-based GSA method. For both methods we use the Python
implementation available in the SALib package.

We propose to tackle the GSA problem from a causal perspective, and specifically using causal
discovery. The aim of causal discovery [15] is to uncover causal relationships among a set of
observed variables, which can be graphically represented through Directed Acyclic Graphs (DAGS).
In a DAG, variables are represented by nodes, and the causal directions are encoded through directed
edges, whose associated weights provide the strength of the influence of one variable on another
one following the causal paths; acyclicity means that there is no cycle, i.e., there is no directed path
starting and ending in the same node. This graph-based representation offers a holistic overview of
the system under study [16], and provide straightforward interpretation of the relationships between
the considered variables.

Figure 9 shows schematically our pipeline to perform causality-based GSA. Firstly, the input model
parameters are sampled in their respective ranges through Latin Hypercube Sampling (LHS) and the
model outputs of interest are computed for each sampled parameters’ combination by running the
considered electromechanical model (more details about the simulations will follow below). Causal
discovery is then deployed on the dataset of model parameters and outputs: the learned causal
graph and the information contained therein quantify the effect of the parameters’ perturbations
over the selected outputs. In particular, the causal weights define our causality-based sensitivity
indices. It is worth noticing that prior knowledge about the relationships between model parameters
and outputs can eventually be incorporated in the causal discovery phase, if available, to facilitate
the estimation of the corresponding weighted causal graph. In order to independently validate the
causal graph and its sensitivity interpretation, we additionally performed classification using
classical machine learning approaches.
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Figure 9. Graphical pipeline of causality-based global sensitivity analysis.

Of note, our causality-based sensitivity indices are not forced to be positive, as opposed to other
classical approaches. Besides being an added value of our approach, since the sign of the causal
weights can provide additional relevant information to further interpret the mutual relationships
between model parameters and outputs, when comparing our results to the benchmark we will use
the absolute values of the causality-based sensitivity indices, which denotes the absolute causal
strength. In order to investigate the stability of the obtained results, for both the causal weights and
the Pawn sensitivity indices we compute the mean values over 5-fold cross-validation. Concerning
Sobol, to adhere to the sampling scheme assumption proposed by Slatelli et al. [17] (and deal with
the limited number of available model simulations), we choose to repeat the Sobol analysis 10 times
by randomly removing each time 8 simulations among the 200 available, and reported the average
values, rather than performing the 5-fold cross-validation scheme.

Causal Discovery through DierctLiNGAM

We choose to rely on Linear non-Gaussian Acyclic models [18] to solve the task of discovering the
causal graph relating model parameters and outputs (our observed variables, and the nodes of the
searched DAG). LINGAM assumes that the functional dependencies of each cause on its effects are
linear, with associated additive independent and centered non-Gaussian error terms. Formally, let
X = {x,}, our dataset, where x;,i = 1, ...,n, is a vector containing the observed values of the i-th
variable of interest (here, either a model parameter or a model output). The generating process for
each x; € X writes:

X; = Z bjixj+el-, (1)

ijPai
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where Pa; is the set of parents of x; (i.e., the nodes who precede x; following the sense of directed
edges), b;; defines the linear causal effect of x; — x;, and e; denotes the
noise of x;, supposed independent from any other e;, when j # i.

In order to fix the ideas, let us suppose we observe 3 variables, X;, X,, X3,
which are causally related following the DAG in Figure 10. In this case

@—’@ we can say that X; has no parent; X,, X5 are both children of X;; and

X1, X, are both parents of X;.

Figure 10. A simple DAG with
3 variables. In a matrix form, Eq. (1) can be written as:

X=(U-B)"E,

where I is the identity matrix, B is a matrix whose ij-th element is b;; and E contains the non-
Gaussian error terms. The acyclicity assumption implies that it exists a permutation of the rows and
columns of matrix B so that the permuted matrix is strictly upper triangular. A:= (I — B)"1 is called
the mixing matrix.

Under the LINGAM assumptions, i.e., the non-Gaussianity of the independent additive noises with
the linear causal relationships, LINGAM parameters can be proved to be identifiable, which ensures
the possibility to recover the true causal structure, at least from a theoretical viewpoint. The ICA-
LINGAM estimation method then proposes to estimate A through Independent Component Analysis
(ICA). However, the ICA optimization, typically based on iterative search, may get trapped in a local
optimum, leading to potential computational instability. For this reason, we decided to use
DirectLiNGAM [19] which implements an alternative non iterative optimization scheme, hence
providing formal guarantees for convergence, while avoiding the specification of additional
hyperparameters which would necessitate fine tuning. Briefly, in order to estimate the mixing matrix,
DirectLiNGAM identifies exogenous variables through independence tests from the residuals of
pairwise regressions. Then, the impact of the identified variables is removed from the others through
least squares regression.

Setup of simulations

We perform a total of 200 simulations of the considered electromechanical model after
simultaneously sampling 10 model parameters of interest in their respective ranges (see Table 3),
using a LHS scheme. Each simulation of the considered electromechanical model generates two
output curves: left ventricular volume and pressure over time. Using these outputs, we compute the
ejection fraction (EF), defined as the ratio of stroke volume to end-diastolic volume, and max(dP/dt),
the maximum rate of change in left ventricular pressure. We are particularly interested in these two
biomarkers to achieve a better model calibration and refine our knowledge on the input parameter
ranges.

The biventricular geometry used in this study comprises 7 279 nodes and 31 330 tetrahedra. To hold
the model in space and to represent the fibrous tissue around the valves, a spring force is added to
all nodes surrounding the valves, so that these nodes are attached to their initial position but can
still have a displacement. The value of 9 kPa for the spring stiffness associated to these nodes has
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been used and seems to be a good trade-off between the mesh deformation and the numerical
stability by keeping the mesh attached in space. The implementation of the whole dynamical system
has been done in the open-source framework SOFA [20]. The simulated cases where the
mathematical model didn't converge were excluded. Before entering each GSA pipeline, the final
dataset of parameters and outputs have been standardized.

Table 3. Parameter ranges for LHS, and corresponding units. C4, k govern the heart tissue properties; a, b, g, h define the
stress profile in the mechanical model; R,, R, C describe the arterial pressure; o gives the peak contractility. nd: non
dimensional.

Cy k a b g h R

1
(kPa) (kPa) (nd) (nd) (nd) (nd) (kPa-s/m?)
[1e4, 15e4] [3e5, 3e6] [0.5,4] [1,8] [0.5,3] [1,4] [1e8,1e9]
R, c Oy
(kPa-s/m?3) (m3/kPa) (kPa)

[1e5,4.5e6] [9e-9,1e-8] [1e5,1.5e6]

2.2.3 Results and conclusions

Thanks to our causality-based GSA approach we have identified a subset of 6 parameters as the
most impacting for the considered model’s outputs, over the 10 initially investigated: results are
depicted in Figure 11 through a DAG representation. As one can extrapolate from the graph, causal
relationships are observed from R,and k towards EF and from a and b towards max(dP/dt).
Moreover, C; and o, (the peak contractility) simultaneously influence both outputs.

-0.51 £0.01 0.35 £ 0.03

Ol a0

Figure 11. Causal graph obtained using DirectLiNGAM for the 10 parameters described in Table 10 and the
two output of interest, EF and max(dP/dt).

The numerical values associated to the directed arrows in Figure 11 provide the mean causal
weights across the 5 folds and the corresponding standard deviations: we interpret them as the
causality-based sensitivity indices. To ease the lecture of the graph, nodes are colored depending
on their role: green nodes represent the parameters which have been identified as influencing a
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single outcome of interest (pink rectangles), while orange nodes indicate parameters that affect
both outcomes; the gray nodes correspond to parameters that have no causal impact over the
outcomes of interest.

The signs of the weights provide further insight on the expected behavior of parameter-output
relationship. For instance, g, is found to positively influence both outcomes (i.e., increasing o, will
result in higher EF and max(dP/dt)). An example of this behavior is presented in Figure 12 (top panel),
where we show results for three different values of g,. On the opposite, the material parameter C;,
that describes the stiffness of the tissue, negatively affect the two outputs of interest: as C;
increases, EF and max(dP/dt) decrease. Examples are shown in Figure 12 (bottom panel). This is an
expected behavior, as stiffer tissue is less prone to contract, thus implying a decrease in both
biomarkers.

LV volume LV pressure
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100 ;:-‘»100
- L — 205
E £ op = 3e
2 80 o 50 — 0p = 6e’
=1 3
2 2 — gp=9¢°
60 a 0
40, 200 400 600 =0, 200 400 600
time (ms) time (ms)
“ 35.55 4173 64.7
Max(dP/dt) 45 4.94 14.08
LV volume LV pressure
120 125
110 100
P
£100 E & = (C;=2.5e*
© > 50 —— (C; =5e*
ER 2 C,=7.5e*
S ¢ 25 - Li=/.0e
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0 200 400 600 =25 200 400 600
time (ms) time (ms)
| € | 254 | 54 | 75ed |
“ 4.12 41.73 24.63
Max(dP/dt) 5.19 4.94 5.63

Figure 12. Effects of the variation of the peak contractility a, (upper panel), and the tissue parameter C,
(bottom panel) over the volume and pressure curves, and the extracted EF and max(dP/dt).
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To further validate our results in terms of parameters’ selection, we perform multi-class
classification considering the four features that have been identified as causally affecting EF (Rp, k,
C,,0), and four classes of cardiac activity based on EF: normal heart function (NHF), where EF
ranges from 55% to 70%; below-normal heart function (BNF), characterized by an EF between 40%
and 54%; possible heart failure (HF), where EF is less than 40%, indicating impaired heart function;
and potential hypertrophic cardiomyopathy (PHC), associated with an EF exceeding 70%. In Figure
13, we show the statistical distribution of EF values across our dataset and the classification
performance obtained when accounting for several combinations of parameters, starting from the
four model’s inputs parameters identified as being directly related to EF, up to the inclusion of all
available ones. The best performance is achieved using the set revealed in the causal graph, which
validate our parameter selection.

NHF
- —
00 = —
GIS ﬁ
(|

0.7
0.6 B Accuracy

B Sensitivity

B Specificity

4 feat. 6 feat. 8 feat. All feat.
a) b)

Figure 13. a) EF classes proportions. b) Classification performances.
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Figure 14. Sensitivity indices obtained with causal discovery (upper panel), Pawn (middle panel) and Sobol
(bottom panel) for all input parameters included in this study (see Table 3). Left column: sensitivity of the EF
outcome. Right column: sensitivity of the max(dP/dt) outcome. Box plots are colored following the same code
as in Figure 11. In the first row, parameters g, h, C, R, have been excluded (no discovered causal effect).

We finally compare our results to two widely used GSA approaches: Pawn and Sobol. The obtained
sensitivity indices with all methods are illustrated in Figure 14. One can see that the Pawn method
provides equivalent sensitivity indices for most parameters, especially for max(dP/dt). For instance,
it identifies parameters b, h and C as having an important effect on EF: this has been invalidated by
independently performing single sensitivity analysis, further stressing the relevance of causal
discovery to identify the most influential model parameters. Moreover, in this specific case where
we deal with a large parameter space, a highly non-linear model, and a limited number of simulations,
Sobol appears to be completely unreliable to identify the key parameters and their effect over our
outputs of interest. Indeed, the mean value of all first-order Sobol’s sensitivity indices is found to be
zero. Finally, one can appreciate the stability of the results obtained with our method compared to
both Pawn and Sobol.

To conclude, we have proposed to leverage causal discovery to perform global sensitivity analysis
for a fast electromechanical model and considering two clinically significant biomarkers: ejection
fraction (EF) and maximum rate of pressure change (max(dP/dt)). The obtained causal graph
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reveals and quantifies the impact of the most relevant model parameters on the considered outputs,
yielding stable results compared to classical global sensitivity analysis methods, despite a limited
number of available simulations. Besides the electromechanical model considered here to illustrate
our method, the proposed approach is general and could be relevant on others complex models,
where parameters have a very indirect link with simulation outputs.

3. A digital twin approach integrating clinical, structural, and in-silico
hemodynamic data to uncover stroke risk factors

3.1 Objectives

In the context of stroke, digital twins can aid clinical decision-making across multiple medical
specialties (e.g., neurology, cardiology) by enhancing the identification of risk factors linked to
thrombus formation. While comprehensive stroke digital twins are highly complex, those focused
specifically on the left atrium (LA) have already demonstrated their value in treatment planning and
in improving our understanding of left atrial blood flow patterns in atrial fibrillation patients at risk
of ischemic stroke [21,22,23]. The advent of mechanistic models using computational fluid
dynamics (CFD) enables the simulation of blood flow in patient-specific atrial geometries [24,25].
From these models in-silico hemodynamic indices can be extracted, offering valuable insights into
atrial blood flow behavior. In the following section, we present a Digital Twin that integrates multi-
domain data to identify stroke risk factors in patients with non-valvular atrial fibrillation (AF). Clinical
information, morphological features, and in-silico hemodynamic indices were jointly analyzed in a
cohort of 130 patients using unsupervised machine learning to cluster them into distinct
phenogroups based on their thrombus history. We hypothesized that integrating all available patient
data within a digital twin framework would support the identification of phenogroups associated
with cardioembolic thrombus. The results that will be presented here have been recently published
in npj Digital Medicine [26].

3.2 Methodology

Figure 15 illustrates the proposed methodological pipeline. A Digital Twin of the left atrium was
constructed from computed tomography (CT) images by segmenting the anatomy and extracting
morphological parameters. A 3D mesh of the atrium was then used for patient-specific fluid
simulations, from which hemodynamic indices—such as the number of fluid particles remaining
inside the left atrial appendage (LAA)—were derived. Clinical data was integrated with morphological
and hemodynamic features through the unsupervised multiple kernel learning (MKL) technique [27].
After applying feature selection, MKL was implemented to reduce the dimensionality of the feature
space. From the low-dimensional output space, patients were clustered into phenogroups based on
clinical, morphological, and hemodynamic similarities. These phenogroups were clinically
interpreted and labeled according to increasing thrombus history (Phenogroups 0-2).
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Figure 15. Scheme of the methodological pipeline. AF atrial fibrillation, LA: left atrium, LAA: left atrial
appendage, PV: pulmonary vein, MKL: multiple kernel learning algorithm, CT: computed tomography [26].

Study population

Clinical data was provided by Hospital Haut-Lévéque (Bordeaux, France), comprising medical
records and pre-procedural CT scans from 130 patients with non-valvular atrial fibrillation (AF)
scheduled for a left atrial appendage occlusion (LAAO) procedure. The study population was
severely diseased, with high risk of thromboembolic events (mean CHA2DS2-VASc score of 4). A
history of stroke/TIAA or a detected LAA thrombus was observed in 44.6% of patients. The
anticoagulation therapy was short-termed due to history of bleeding among patients (90.2%), with
stroke/TIA generally occurring after its removal.

Input features

Table 4 shows the clinical, morphological and in-silico hemodynamic features extracted. The
features are divided by input features to the unsupervised machine learning algorithm (‘Input
features’) and features used as an additional characterization of patients once they have already
been stratified (‘descriptive features’).
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- Clinical features

History of thrombus—defined as a prior ischemic stroke or TIA, peripheral embolism, and/or LAA thrombus
detected on preprocedural CT—was used as the label to stratify the patient population. Baseline
characteristics, including age, body mass index (BMI), gender, hypertension, type 2 diabetes, vascular disease,
dyslipidemia, type of atrial fibrillation (paroxysmal vs. non-paroxysmal), and HAS-BLED score, were extracted
from electronic health records. Echocardiographic data such as left ventricular ejection fraction (LVEF) were
also included. Heart failure was defined either by a clinical diagnosis or by reduced left ventricular systolic
function—classified as severely reduced (LVEF = 40%) or moderately reduced (LVEF 41-49%). From pre-
procedural medical records, laboratory parameters were obtained, including C-reactive protein (CRP), B-type
natriuretic peptide (BNP), hematocrit, creatinine, glomerular filtration rate (GFR), urea, neutrophil-to-
lymphocyte ratio, mean platelet volume (MPV), platelet count (PC), troponin, and fibrinogen levels.

- Morphological features

An in-house computational pipeline was used for the automatic extraction of left atrium (LA) and left atrial
appendage (LAA) geometric parameters. This algorithm derives patient-specific LA and LAA morphological
measurements from chest CT scans.

- In-silico hemodynamic features

Construction of in-silico hemodynamic models. The LA cavity was reconstructed from binary
segmentations of CT images using semi-automatic region-growing methods available in Slicer
4.10.1. Computational fluid dynamics (CFD) simulations were performed using the ANSYS Fluent
Solver 19.2 (ANSYS Inc., United States) to solve the Navier-Stokes equations via the finite volume
method. Blood was modeled as an incompressible Newtonian fluid with a density of 1060 kg/m?
and a dynamic viscosity of 0.0035 Pa-s. The pipeline described by Mill et al. [28] was followed. All
simulation models incorporated two distinct boundary conditions (BCs): (1) a pressure inlet at the
pulmonary veins (PVs), using a pressure waveform obtained from catheterization data of an AF
patient in sinus rhythm; and (2) a velocity outlet at the mitral valve (MV), derived from Doppler
echocardiography measurements collected from the study cohort. Electrocardiography recordings
were used to determine the duration of each cardiac cycle. Furthermore, LA wall motion was
simulated as a passive response to the longitudinal movement of the mitral valve annulus,
employing a spring-based dynamic mesh approach.

In-silico hemodynamic parameters. Particle-based in-silico indices were derived from the CFD
simulations to assess blood stasis in the left atrial appendage (LAA), following the methodology
described by Mill et al. [28]. Massless tracer particles were released from the pulmonary veins, and
their motion was governed by the simulated velocity vector fields originating from their respective
seed locations. These particles were tracked continuously throughout the cardiac cycle. At each
time step, 100 particles were injected—50 from each side of the left atrium (LA), uniformly
distributed across the pulmonary veins. Two key hemodynamic indices were calculated: (1) the total
number of particles remaining in the LAA at the end of the cardiac cycle, and (2) the particle age,
defined as the duration a particle remains within the LA before exiting.
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Table 4. Extracted features and their associated domains, organized into two categories: input features used for machine
learning (ML) analysis and descriptive features used for post-ML interpretation.

Domain Input ML variables Descriptive variables
Age, BMI*, BNP levels*, _ AF type, gender, HF, HT,
o ereatinine levels® dlabetes.type 2, vascular dlseasle,
Clinical . ! CRP, ratio neutrophyl/lymphocite
hematocrit levels*, dyslipidemia, HAS-BLED,
ratio MPV/PC¥, LVEF troponin, fibrinogen, urea, GFR
LAA volume/area/height/depth,
ostium diameter /eccentricity/
Ostium area, ostium irregularity, perimeter, number of LAA lobes,
LA volume, LAA centerline length, LA area/centreline length,
Morphological LAA tortuosity, LA sphericity, LAA shape/alignment label,
LAA bending angle, ratio ostium area/LAA volume,
LAA/LSPV alignement angle (2D) ratio LAA /LA volume,
LAA/LSPV alignement angle (3D)
PVs diameter and orientation
In-silico hemodynamic Total LAA particles Particle age

Multi-domain data integration
- Feature pre-processing and dimensionality reduction

Atotal of 47 variables were extracted, encompassing clinical, morphological, and in-silico blood flow
data (Table 4). Of these, 12 clinical variables contained missing values. To address this, missing
data were imputed using the Random Forest method for mixed-type data, implemented via the
‘missForest’ package (version 1.4) in R [29]. An initial feature selection was performed, by not
including features with more than 30% missing values to reduce potential bias, also, features with
bivariate Pearson correlations > 0.7 were not included. The in-silico index particle age was excluded
from the machine learning inputs, as previous studies found no significant associations with
thrombus formation. An unsupervised Multiple Kernel Learning (MKL) algorithm was employed
[27]—a validated machine learning approach previously used in cardiac disease research. MKL
integrates diverse feature types by assigning each one a dedicated Gaussian kernel, combining them
into a unified low-dimensional representation. In this space, patients are positioned based on the
similarity of their input features. The bandwidth of each Gaussian kernel was set to the square root
of the number of patients (VN,), averaging distances over the VN, nearest neighbors. As all input
features were continuous, Euclidean distance was used across all kernels.

- Clustering

As a result, patients with similar characteristics were positioned closer together in the MKL-
transformed space, improving interpretability and enabling effective clustering. K-means++ was
chosen for clustering due to its simplicity and efficient centroid initialization. To enhance robustness,
each clustering run included 20 iterations with different initializations. Six separate clustering
analyses were performed using various combinations of clinical, morphological, and hemodynamic
features to assess the contribution of each feature set. For each analysis, the optimal number of
clusters and dimensions was determined using a grid search based on the average silhouette score,
calculated across both K-means++ and hierarchical clustering. The number of clusters tested
ranged from 3 to 4, balancing granularity and sample size, while dimensionality was varied from 2
to 5. Each analysis explored different combinations of input domains for MKL-based dimensionality
reduction and clustering (see Table 5).
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- Statistics

Continuous variables were assessed for normality using the Shapiro-Wilk test and for
homoscedasticity with the Levene test. When the null hypothesis was rejected at a significance level
of a = 0.05—indicating non-normality or unequal variances—the non-parametric Wilcoxon Mann-
Whitney test was used for univariate comparisons, and results were reported as median with
interquartile range. For variables meeting parametric assumptions, the Student’s t-test was applied,
with values expressed as mean + standard deviation. Differences across clusters were evaluated
using ANOVA for normally distributed data or the Kruskal-Wallis test for non-parametric data. Post-
hoc pairwise comparisons were performed using Tukey's HSD (parametric) or Dunn’s test with
Bonferroni correction (non-parametric). Categorical variables were analyzed using the chi-square
test, with false discovery rate (FDR) correction applied for multiple testing. Statistical significance
was set at p < 0.05. All analyses were conducted in R.

Table 5. Domain-specific experiments performed with unsupervised multiple kernel learning (MKL), with different
combinations of morphological, hemodynamic and clinical domains.

Analysis ML domain combinations
1 Clinical
Morphological
Morphological + clinical
In-silico hemodynamic + clinical
Morphological + in-silico hemodynamic
Morphological + in-silico hemodynamic + clinical

O Ut x| W D

3.3 Results

The study included 130 atrial fibrillation (AF) patients with severely diseased left atria and high
thromboembolic risk, incorporating both clinical data and medical imaging. A univariate statistical
analysis was conducted to identify significant differences between patients with and without a
history of thrombus. Among clinical variables, only dyslipidemia was significantly associated with
thrombus history. Anatomically, patients with prior thrombus had larger LAA ostium dimensions and
were more likely to have multi-lobed appendages (=2 lobes). In terms of in-silico hemodynamics, the
total number of LAA particles was significantly higher in the thrombus group. Different
combinations of input data domains were integrated using Multiple Kernel Learning (MKL) and
analyzed through clustering techniques (see Table 5). Significant associations with thrombus
history were identified in the clusters (phenogroups) derived from combining morphological and in-
silico hemodynamic features (Analysis 5), as well as from the integration of clinical, morphological,
and hemodynamic data (Analysis 6). Clusters based solely on morphological features (Analysis 2)
were also further examined to explore their relationship with modeled hemodynamic parameters.
Across all analyses, the configuration with three clusters in a two-dimensional space yielded the
highest silhouette score.

Digital twin clustering based on morphological factors. Stratifying patients based solely on left atrial
anatomical features revealed phenogroups with significant differences in the number of in-silico
particles retained within the LAA, reflecting varying degrees of blood flow stasis. The phenogroup
with the highest particle retention was characterized by larger ostium dimensions, increased LA and
LAA volumes, and a strong alignment between the left superior pulmonary vein (LSPV) and the LAA.
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Digital twin clustering based on morphological and hemodynamic factors. Including the number of
in-silico LAA particles as an input feature led to the identification of phenogroups with significant
differences in thrombus history. The phenogroup with the highest proportion of prior thrombus
cases (64%) showed the greatest number of fluid particles inside the LAA, larger LA, LAA, and ostium
areas, and stronger alignment between the LAA and the left superior pulmonary vein (LSPV). This
group also exhibited less LAA bending—suggestive of non-chicken-wing morphologies—and
elevated B-type natriuretic peptide (BNP) levels. Among all features, ostium area was the most
predictive of phenogroup classification. Interestingly, thrombus cases within the phenogroup with
the lowest overall thrombus prevalence were associated with a higher incidence of dyslipidemia,
increased number of LAA fluid particles, and a steeper right superior pulmonary vein (RSPV) inflow
angle.

Digital twin clustering based on clinical, morphological and hemodynamic factors. Integrating clinical
data with in-silico hemodynamic and morphological features enhanced patient stratification by
thrombus history, identifying a phenogroup with a 70% prevalence of prior thrombus formation. The
clustering analysis resulted in three distinct phenogroups, each with unique characteristics (Figure
16). Phenogroup 2 (n = 30) had a significantly higher proportion of patients with a history of
thrombus compared to Phenogroup 0 (70% vs. 33%, p = 0.016) and Phenogroup 1 (70% vs. 40%, p =
0.03). As shown in Figure 16, this group was characterized by significantly larger left atrial (LA)
volumes and ostium areas (though not a higher ostium area-to-LAA volume ratio), increased LAA
anatomical complexity, greater LA sphericity, and stronger alignment between the LAA and the LSPV
in non-chicken wing morphologies (Figures 16d and 16f). Phenogroup 2 also had the highest number
of fluid particles retained within the LAA (Figure 16b). Figure 17a illustrates the residual particle
distribution in the LAA for representative patients from each phenogroup, while Figure 17b
summarizes the key clinical, anatomical, and hemodynamic characteristics defining each group.
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Figure 16. Clustering results based on clinical, morphological, and hemodynamic features. (a) Cluster distribution showing
patients with (red circles) and without (green circles) a history of thrombus. (b) Distribution of number of in-silico LAA
particles by cluster. (c—f) Radar plots displaying median normalized values per cluster: (c) demographic and laboratory
features, (d) anatomical (shape-related) markers, (e) categorical descriptive variables (shown as %), and (f) continuous
descriptive variables. The blue, orange, and magenta lines represent Phenogroups 0, 1, and 2, respectively. Categorical

variables are displayed as percentages (%), and statistically significant differences (p < 0.05) are marked with an asterisk
(*). AF: atrial fibrillation; BMI: body mass index; BNP: B-type natriuretic peptide; CW: chicken wing; MPV: mean platelet
volume; PC: platelet count; LVEF: left ventricular ejection fraction; LA: left atrium, LAA: left atrial appendage; LIPV: left
inferior pulmonary vein; LSPV: left superior pulmonary vein. [26].

Clinically, Phenogroup 2 showed the highest BNP levels, MPV/PC ratio, creatinine (gender-adjusted),
and non-paroxysmal AF prevalence, along with lower LVEF and hematocrit (although both within
physiological ranges). Phenogroups 0 (n = 42) and 1 (n = 58) had fewer thrombus cases and distinct
clinical profiles (Figure 16c, 16e). Phenogroup 1 had significantly lower BNP and MPV/PC ratios
compared to Phenogroup 2, while Phenogroup 0 differed mainly in anatomical features—smaller
ostium area, LA sphericity, LAA volume, and reduced LAA/LSPV alignment. Within Phenogroup 2,
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patients without prior thrombus (n = 9) had lower LA volume, BMI, hematocrit, and hypertension
rates, and less steep LIPV angles. Conversely, thrombus cases in Phenogroup 0 had significantly

higher MPV.
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Figure 17. Phenogroup comparison based on clinical, morphological, and hemodynamic features. (a) Visualization of
residual computational fluid dynamics (CFD) particles within the left atrial appendage (LAA) at the final time step (end-
systolic phase) for representative patients from each phenogroup, illustrating typical particle counts (nparticles). Black
arrows indicate the degree of alignment between the LAA and the left superior pulmonary vein (LSPV). (b) Summary of

the key clinical, anatomical, and hemodynamic characteristics defining the three identified phenogroups. [26].

To improve interpretability, a Random Forest classifier was trained using the cluster assignments
as labels. Feature importance was then evaluated using Shapley Additive exPlanations (SHAP),
which highlighted the most influential variables for phenogroup differentiation. As shown in Figure
18, BNP, LA volume, and ostium area emerged as the top contributors, with the total number of LAA
particles also playing a relevant role. BNP was particularly important in distinguishing Phenogroups
0 and 1, whereas ostium area was the main driver for identifying Phenogroup 2.
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3.4 Discussion and conclusions

The development of left atrial digital twins is essential for advancing stroke treatment and
prevention in patients with atrial fibrillation (AF). In this study, we integrated multi-modal data—
including demographics, blood biomarkers, and LA morphological features—with indices derived
from computational fluid dynamics (CFD) simulations of left atrial blood flow to construct digital
twins for a cohort of severely diseased AF patients, many of whom had a history of thrombus. We
analyzed patient phenogroups based on various combinations of clinical, anatomical, and
hemodynamic characteristics to uncover underlying relationships. Each phenogroup was then
clinically interpreted, with a particular focus on the proportion of patients who had experienced
thrombus formation. Our findings show that combining clinical, morphological, and circulatory data
improves patient stratification based on prior thrombus formation. In conclusion, this descriptive
study emphasizes the value of integrating clinical, morphological, and hemodynamic data to better
understand the multifactorial drivers of thrombus formation in patients with advanced atrial
fibrillation. By leveraging unsupervised machine learning, we demonstrate how multi-domain data
integration can uncover distinct phenogroups and support thrombus risk stratification. Early
identification of high-risk phenotypes—prior to left atrial appendage occlusion (LAAO)—can inform
clinical decisions, such as intensifying monitoring or tailoring anticoagulation strategies, especially
in patients with contraindications to oral anticoagulants. Our preliminary findings suggest that
specific anatomical features, such as smaller ostium dimensions, atrial remodeling, LAA tortuosity,
and certain pulmonary vein configurations (e.g., low LAA-LSPV alignment), may improve local flow
dynamics by reducing stasis in the appendage. These morphological characteristics could offer
protective effects even in clinically pro-thrombotic individuals. Future work should focus on refining
this integrative framework to develop novel risk scores or predictive tools for thrombus formation.
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4. Causal learning for in-silico biomarkers analysis and TdP risk
assessment

Drug-induced Torsade-de-Pointes (TdP) is one of the most frightening drugs’ side effects, which
can provoke ventricular fibrillation and lead to sudden death: consequently, pro-arrhythmia
assessment is needed in the preclinical stages of drug development. TdP is closely related to
abnormal repolarizations in single cardiac cells, hence by a prolongation of the QT interval. The
human Ether-a-go-go-Related Gene (hERG) is responsible for the rapid component of the delayed
rectifier current (I«) which is one of the major repolarizing currents in the heart [30]:
proarrhythmic risk assessment of drugs is traditionally based on the evaluation of the hERG
channel and the measure of the delayed ventricular repolarization on the electrocardiogram
(ECG), i.e. the QT interval prolongation [31]. This method can accurately classify high TdP-risk
drugs through a single analytical assessment considering a unique ionic channel and exclusively
focusing on ventricular repolarization [32]. However, it has been observed (e.g. [33]) that Ik
blocking may be not sufficient to assess drug-induced TdP risk and is prone to produce false
positives.

The limited accuracy of strategies focusing on hERG block and QT prolongation has been at the
basis of the Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative, promoting in-silico
simulations to improve predictions by providing a mechanistic classification [34].
Electrophysiological models considering the blockage of the seven ionic currents identified by
CiPA (Ikr, Ina, INaL, lcaL, Ik1, lks @and lio), instead of only the main repolarizing current Ix,, are used to
compute biomarkers able to better identify torsadogenic drugs. Consequently, recent studies
have been proposed to incorporate additional ion channels other than Ik, for a more reliable drug
safety assessment, and several ion channels’ combinations have been proposed as the most
effective to assess drug-induced TdP risk [35,36,37].

Besides ionic currents blockade, in-silico electrophysiological and mechanical biomarkers can
provide mechanistic proarrhythmic information for TdP-risk assessment. Indeed, detailed and
complex biophysical models have been developed to better represent myocyte activity, including
excitation-contraction coupling, the process by which changes in membrane potential trigger
calcium release to activate myofilaments. Therefore, drug effects on ionic currents can be
translated from excitation to contraction. So far, multiple indices have been proposed for TdP-
risk assessment [38], most of them based on drug properties and action potential, and the latest
increasing tendency is to combine several electrophysiological properties, including Ca-derived
features [39,40]. Besides, instead of striving to find a single optimal predictor, the strategy of
combining multiple features and analyzing them with machine learning tools seems promising
[41].

Causal learning is recently attracting increasing interest in the e-medicine community as a
powerful theoretical grounded tool to go beyond correlation-type relationships and promote
interpretability and actionability. Indeed, the query of causality is of paramount importance in
biomedical data analysis: assessing the causal relationships between the observed variables
allows to improve our understanding of the tackled medical condition and better support
decision-making. For instance, understanding the causal relationships between risk factors and
disease can help develop effective prevention and treatment strategies and prioritize the
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available information to improve risk assessment tools. In this section we present the work done
on the characterization and assessment of drug-induced TdP risk, combining causal learning
and in-silico derived biomarkers. The first study [42], described in Section 4.1, concerns the
discovery of a causal structure relating drug-induced ionic channels’ perturbations and TdP risk,
with the objective of exploiting the obtained Bayesian causal network to infer the downstream
impact of the ionic currents in the drug’s safety. The second study [43], described in Section 4.2,
lies in a multichannel context, with ionic currents blockades, torsadogenic indices, and
electrophysiological biomarkers being three distinct channels, and aims at identifying between-
channels causal relationships at a high level through the definition of a channel-specific latent
representation. The objective is to effectively combine the different sources of information
(channels) and achieve a more informative TdP-risk characterization.

4.1 Linear non-Gaussian acyclic model for ion channel blockade

4.1.1 Objectives

Discovering causal relationships between drug-induced ionic channels’ perturbations could shed
new light on the underlying mechanisms leading to TdP, and drive variable selection to improve TdP-
risk assessment. This can be achieved through causal discovery, a branch of causal research whose
aim is to learn the cause-effect relationships from data, which can be typically represented through
Directed Acyclic Graphs (DAGs), a graph where nodes denote variables at hand, directed edges the
causal relationships relating them, and which does not present any cycle (no pattern starting and
ending in the same node).

Among classical existing methods for solving the task of learning such DAGs [15], we propose to
apply the causal discovery method ICA-Linear Non-Gaussian Acyclic Model (ICA-LINGAM) to
uncover the relationships across the 7 ion channels identified by the Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative as potentially related to the induction of TdP: Ik, Ina, INaL, IcaL,
Ix1, Iks and lo. The obtained Bayesian causal network can be then explored to infer the downstream
impact of the ionic currents in the drug’'s safety label. We further assess the relevance of our
causality-based selection of ion channels by independently performing binary drug risk classification.

4.1.2 Methodology

We briefly recall here the assumptions and properties of a Linear non-Gaussian Acyclic Model
(LINGAM) [18] (already described in Section 2.2 of this deliverable). LINGAM assumes that the
causal relationships between variables can be represented by means of a directed acyclic graph
(DAG) where the causal functions between each variable and its parents’ nodes (i.e., the variables
that causally precede it) are linear, and the error term associated to each variable follows a non-
Gaussian distribution. Under these assumptions the theoretical identifiability of the model can be
ensured. Denoting X the matrix of observations for each variable, then:

X=(0-B)"1E,

where [ is the identity matrix, B is a matrix whose ij-th element provides the strength of the linear
causal relationship of the j-the variable over the i-th one, and E contains the non-Gaussian error
terms. In order to estimate the mixing matrix A:= (I — B)™!, we use DirectLiINGAM [19] a well-
established method for the estimation of LINGAM models. DirectLiNGAM is based on Independent
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Component Analysis (ICA) and implements a direct non-iterative optimization scheme, which
provides formal convergence guarantees.

We consider a total of 109 drugs from CredibleMeds with known torsadogenic risk (37 with known
risk, 14 with possible risk, 13 with conditional risk and 45 with no proven risk). For every drug, we
consider two pharmacological data: the IC50 for each of the seven ionic currents that have been
proven to be potential for TdP induction (lkr, Ina, Inat, Icat, Ik1, lks, ko), @and the effective free therapeutic
plasma concentration (EFTPC), defined as the drug concentration in the plasma required to produce
the desired therapeutic effect in the body. This information is combined to define the ion channels
blocked fraction, here denoted by Bf|on:

ICsplon\ ] "
Bion = |1+ (E2055) | -

where h denotes the Hill coefficient, the number of drug molecules assumed to be sufficient to block
an ion channel.

DirectLINGAM is applied on the ion channels blocked fractions for the seven considered ionic
currents; an extra binarized Label node (i.e., drugs of confirmed or possible TdP-risk are labelled as
unsafe, and drugs with conditionally or no proven TdP risk as safe) is included as well to investigate
the relationships of the blockade parameters with the known proarrhythmic risk. We implemented a
5-fold cross-validation over the 109 drugs and keep any directed arrow that was discovered at least
on 2 folds.

We further use the obtained causal graph to inform about variable selection for TdP risk
classification. Specifically, the nodes which appear as being consistently associated to the Label
node were used as input of classical machine learning (ML) models to perform an independent
binary classification of the considered 109 drugs. In particular, two classical ML classifiers were
used: RandomForest and K-Nearest-Neighbors, whose prescriptions were finally combined through
a majority voting classifier [44]. A 5-fold cross-validation was performed as well for the classification
task.

4.1.3 Results and conclusions

In Figure 19 we show the causal graph obtained by applying DirectLiNGAM to the ion channels
blocked fractions for the seven considered ionic currents: the arrow thickness represents the
number of occurrences of the causal arrows over the 5 folds. One can see that the Kr channel is
systemically identified as a direct cause leading to the drug label, in accordance with the established
role it plays for repolarization. Also, lca. and InaL iOnic currents appear both as directly affecting the
drug label, even if with a milder relevance with respect to IKr. Despite the fact that fast Na channel
is not affecting the node label directly, it still plays an important and central role since it appears to
be causally related to Ik, lcal, and Ina. ion currents.

Our causality-based results where further confirmed by performing an independent binary
classification of the 109 drugs used for this study. In Figure 20 we present the accuracy and
specificity scores for the ion channels combinations revealed by the obtained causal graph (Figure
19), starting from the most stably identified parent of the label node, Ik, up to its farthest ancestors.
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Figure 19. Causal graph obtained relating the blocked fractions for the seven considered ionic channels (round
nodes) and the TdP risk label (square node), through DirectLiNGAM. We highlight the nodes hierarchy in relation to
the target “Label” node, by coloring nodes from red (directed parents) to white (no directed path).
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Figure 20. Accuracy and specificity for drug-induced TdP risk classification based on the combinations of
ions as discovered by DirectLiINGAM
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The combination of the 3 ions identified through DirectLiNGAM, Ik;, lcal, Ina,, Maximizes the
classification accuracy and specificity, while a progressive degradation of both metrics is observed
when other channels are increasingly added, indicating that the causal graph has been effective in
identifying the main parameters which directly inform on the drug safety classification.

Table 6. Mean values of the AUC, accuracy, sensitivity and specificity of classification based on the ion channels selected
with DirectLiINGAM compared to other state-of-the-art methods which use ion channels for proarrhythmic risk
classification.

‘ lon Combination _ Specificity Sensitivity -

ke, IcaL, INa 0.91 0.91 0.88 0.87 [36]
ke, IcaL, INa NA 0.87 0.73 0.89 [37]
lkr, lcat, INaL 0.94 0.94 0.92 0.95 Ours

Table 6 finally summarizes the mean performances of our causality-based classifications with
respect to some state-of-the-art results [36,37]. Our ion-combination selection shows the best mean
AUC and specificity scores, outperforming the other methods.

These results emphasize the importance of taking into consideration ion currents Ica. and InaL in
addition to Ik to improve drug induced TdP-risk classification, and highlights the relevance of a
causal discovery approach to infer ion channels selection for the drug-induced TdP risk. Our results
are consistent with previous works (e.g., [45]) where the authors showed the crucial role of Ik, lcaL
and Ina. in the computation of in-silico arrhythmogenic biomarkers proposed for TdP risk
assessment.

4.2 Multimodal causal VAE with in-silico electrophysiological
biomarkers

4.2.1 Objectives

The increasing complexity and efficacy of electrophysiological models has motivated the analysis
of multiple indices for TdP-risk assessment, which has shown promising. Nevertheless, the question
of effectively combining the different sources of information (channels) to achieve a more
informative TdP-risk assessment remains open, since the process of analyzing multi-channel data
is challenging by nature, due to data heterogeneity and the potential presence of redundant shared
information.

We propose a novel model based on Variational Autoencoders (VAESs) [46], called Multi-Channel
Causal Variational Autoencoder (MC2VAE), to identify the hidden (latent) causal relationships
between ionic currents blockades, torsadogenic indices, and electrophysiological biomarkers,
considered here as three distinct channels which can contribute to inform on drug-induced TdP risk.
Our main hypothesis is that discovering causal relationships between the different channels could
help our understanding of the underlying mechanisms leading to TdP, and improve its
characterization. As a final validation, we analyze the causal latent projections of the considered
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channels in terms of their ability to discriminate between safe and unsafe drugs (considering the
same binarized label as done in Section 4.1).

4.2.2 Methodology

We consider the dataset of 109 drugs from CredibleMeds with known torsadogenic risk, as in
Section 4.1. We perform electrophysiological cellular simulations with each drug using a modified
version of the human endocardial ventricular O'Hara et al. model [47]. For each drug we dispose
overall of data coming from 3 channels, denoted by /, E, T, and described below.

e [|: The drug-induced blockade of the seven most important ionic currents according to the
CiPA initiative, computed using the simple pore block model, at the effective free therapeutic
plasma concentration (EFTPC) [42].

e E: In-silico electrophysiological biomarkers that consist of direct features from the action
potential (APD90, APD50, Tri9050, Tri9030, qNet) and from the calcium transient signals
(Casyst, Cadiast, CaTD90, CaTD50), including a surrogate of the electromechanical window
(Emw = CaTD90-APD90) [41].

e T:In-silico derived features that have been proposed as torsadogenic indices: Ty, the ratio
between the concentration of a drug that provokes a 10% prolongation of the APD90 in
control conditions and the EFTPC; T, y,;, the ratio between the net charge carried by the net
current when exposed to 10 times the EFTPC with respect to the net charge in control
conditions; and Tyy4n 4, the ratio between Tri9030 for a drug concentration of 10 times EFTPC
and triangulation in control conditions [45].

A power transformation has been applied to / and a logarithmic transformation to T and E, followed
by standardization.

We denote by X = {I, E, T} the dataset consisting of the three channels mentioned above; X; :=
(I;, E;, T;) represents the dataset of the i-th drug.

To analyze such data, we propose a method based on Variational Autoencoders (VAEs), Bayesian
generative models which are composed of two main blocks, an encoder which projects data into a
meaningful lower-dimensional latent space and learns its distribution, and a decoder which
performs the inverse transformation and generate back the data in their original space form their
latent representation. VAEs are highly flexible models, capable of adapting to a wide variety of data
types and structures, and have already shown promise in the context of multi-channel data analysis
[48].
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Figure 21. The structure of MC2VAE, and its application to ionic currents blockades (1), electrophysiological
biomarkers (E), and torsadogenic indices (T). Encoders and decoders are neural networks (in this case, simple linear
layers) parameterized by © and ® respectively. They're outputs are a mean and a standard deviation (u, o) of an
estimated gaussian distribution. A, is the weighted matrix describing the linear causal dependencies between the
latent modality-specific projections.

MC?2VAE is an unsupervised model, whose structure, conversely to standard VAEs, is composed of
three main components: 1) encoding, 2) causal layer, and 3) decoding (Figure 21). Each channel is
projected into a one-dimensional latent space (z:= (z™)p=;rr) through its channel-specific
encoder, a Neural Network (NN) parameterized by © := (,,) ;=1 - The obtained latent variables
are fed to the causal layer. We assume independence between the drugs and a normal prior for their
respective noise terms, p(z). Moreover, we hypothesize linear causal relationships across the
channel-specific latent variables. These assumptions define the following latent structural causal
model, whose learnable parameters are contained in the m-dimensional matrix 4,

z¢ =A$ZC+Z= (I—A;;)_lz, z~N(0,1I)

(Ay)l_j provides the strength of the causal linear relationships of the i-th latent parent variable on the
j-th latent children variable, with i,j in {l, E, T}.

Finally, the causal latent variables z¢:= (z°™),,-; g r are fed to channel-specific decoders, NNs
parameterized by @ = (¢,,) =1 £ 1, fOr the reconstruction.

To optimize the parameters of MC?VAE, we should maximize the marginal log-likelihood of X,
L(X; d),@,Ay), and derive the true posterior p(z|X) over the latent space. Due to analytical
intractability, we apply variational Bayes and introduce a tractable posterior gg(z|X) which
approximates p(z|X) [49]. We finally get to the following loss:
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Lossyozvae(X; 0, Ay, ®):
~ Yo Eaotaix) (g, (x™ 2™, (2™ 2))] +Pxw (go(2lX)|lp(2)) +Reg(4,))

-

Probability distribution Markov factorization of Kullback-Leibler Penalisation
of the decoder the joint distribution of divergence for acyclicity
the causal latent
variables

Of note, since we seek for directional cause-and-effect relationships among causal latent variables,
we enforce the acyclicity of the causal graph through a penalization over term A, inspired by [50].

All encoders and decoders consist in this work of a single linear layer. MC2VAE training is efficiently
carried out through stochastic gradient descent using the Adam optimizer. We perform a 5-fold
cross-validation strategy and run for each experiment 1000 epochs with an initial learning rate of 1e-
2 which allows us to reach convergence.

4.2.3 Results and conclusions

In Figure 21, middle panel, we show the causal graph obtained by applying MC2?VAE on our 3-
channels dataset. Latent causal relationships are captured between the three channels, as
reasonably expected. In particular, a causal relationship from the ionic currents towards
electrophysiological biomarkers has been highlighted, which is in accordance with the fact that the
blockade of ionic currents is used as input of the biophysical model from which these outputs are
computed. We also noticed a bidirectional causal relationship between the electrophysiological
biomarkers and the torsadogenic indices, suggesting a reciprocal influence between both set of
biomarkers. We reported the mean values obtained for the A, weights over the folds, which quantify
the strengths of each causal link. Of note, looking at the bidirectional relationship between the T and
E channels one can note that TaE has a stronger absolute weight: by the way, if one would decide to

privilege a posteriori one direction based on the weight, removing EaT would ensure the acyclicity of
the final DAG.
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Figure 23. Kernel density distribution of drugs for each pairwise combination of latent channels.

To quantify the impact of the discovered causal graph in defining a meaningful latent representation
of the channels, we evaluate MC?VAE's ability to reconstruct the input data, measured through mean
squared error (MSE) and assess that the causal learning step enables efficient reconstruction of the
input data, providing very good reconstruction performances. Further, in Figure 22 we show the 3-
dimensional latent representation of each drug obtained by sampling 50 times from their learned
distribution, each axis being the latent coordinate for a specific channel. Despite MC2VAE is a fully
unsupervised method, we can clearly see the separation of the drugs in the latent space with respect
to their known TdP risk (considered here as binary: unsafe, in orange, for known or possible TdP risk
drugs, and safe, in purple, for the remaining categories). For the sake of clarity, we further project
these representations in each 2D plane (Figure 23), and show two unsafe and two safe drugs -
ibutilide (orange circle), disopyramide (orange square), loratadine (purple circle), and diltiazem
(purple square) — as an example.

Finally, we challenge our latent representation for the downstream binary classification task, and
study the impact of an increasing number of channels to characterize drug-induced TdP risk. Figure
24 shows that the inclusion of each of the considered channels brings additional valuable
information for TdP risk assessment, generating evidence and a strong rational for including them
in the analysis.

100- -

60 L ©
L

40-

20- 1 Accuracy

[ 1 Specificity
[1 Sensitivity

1 Channel 2 Channels 3 Channels

Figure 24. Binary TdP-risk classification performance using a different number of latent channel-specific features.
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In conclusion, thanks to MC?VAE we were able to reveals and quantifies the hidden causal
relationships among the different sets of considered biomarkers, and helps to justify the integration
of these three channels, as their joint causal analysis shows that they produce a much more effective
and actionable characterization of TdP risk than if we were to consider one channel at a time.

5. Conclusions

Deliverable D5.5 presents a collection of works realized by the SimCardioTest consortium under
Task 5.6 (M24-M54) on advanced data science for in-silico trials. The main results described here
concern 1) the development of novel (unsupervised) statistical and machine learning-based
approaches to leverage in-silico generated evidence (sometimes combined with other sources of
information, in a multimodal framework) to gain better risk stratification, and 2) the development of
novel pipelines to investigate the behavior of complex and highly non-linear models, needed to
perform in-silico trials and account for high-dimensional observations.

Model reduction and sensitivity analysis. The increasing complexity of cardiac models needed for
the integration and simulation of high-dimensional observations requires the development of ad hoc
methods to statistically analyze and control their behavior from a large parameter space. Indeed,
classical sensitivity analysis approaches may fail to provide a reliable solution, or require a
prohibitive amount of model simulations to capture the complex interactions between model
parameters and outputs: the development of novel sensitivity analysis approaches tailored to
complex high-dimensional mechanistic models is still an active field of research. One direction
pursued within the SimCardioTest consortium proposes to tackle this problem through model
reduction (for PDE-based models), from 3D to OD. Despite this strategy has shown effective by
providing reliable information for 3D model calibration, several questions remain to be addressed,
notably how to evaluate the credibility of this analysis (which is not part of V&V40)? How can we
establish generic methodologies to guarantee the right features of the reduction processes and
statistical analyses? How to properly characterize the relationship between the original and reduced
model? An alternative direction explored within the context of SimCardioTest consists in leveraging
the probabilistic theory of causality, and establishing causal relationships between parameters and
outputs, for instance through the performance of regressions and conditional independence tests.
The promising results obtained so far for single-point model results encourage us to move forward
in this direction, where additional challenges need to be addressed, for example, how can we
account for time-varying outcomes? Which is the most appropriate choice of causal discovery
method?

Digital twins with in-silico data. The identification of risk factors of thrombus formation, and patient
stratification into phenogroups associated with cardioembolic thrombus is essential for improving
stroke treatment and prevention, thus supporting clinical decision-making. Nowadays, we dispose
of mechanistic models based on computational fluid dynamics (CFD) which enable a reliable
simulation of blood flows in patient-specific atrial geometries, from which in-silico hemodynamic
indices can be generated. Within SimCardioTest we demonstrate the importance of integrating
clinical, morphological, and hemodynamic data for a better understanding of the multifactorial
drivers of thrombus formation in patients with advanced atrial fibrillation. To do that, we leverage
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unsupervised machine learning (multiple kernel learning - MKL) to perform dimensionality reduction
of the multidomain dataset, hence clustering in the lower-dimensional space: clusters where
clinically interpreted, with a particular focus on the proportion of patients who had experienced
thrombus formation. Future work should focus on the validation of the obtained phenogroups
clusters against larger and external patient cohorts, and on the refinement of the proposed
integrative framework, for instance by incorporating categorical variables into the analysis or by
relying on more sophisticated mechanistic models of left atrial hemodynamics, to develop novel risk
scores and predictive tools for thrombus formation.

Causal learning in healthcare. Causal learning is a very active and rapidly evolving area of research,
which is now attracting growing interest in the healthcare community: it aims at exploiting directed
causal relationships between observations, going beyond traditional statistical association, and
ultimately improving interpretability, explainability and actionability. Causal discovery is a research
direction in causal learning whose goal is to retrieve the causal structuring underlying the data
generating process, which ultimately leads to the observations. Classical approaches for causal
discovery are typically well suited to deal with relatively low-dimensional data, while more recent
attempts which couple causal discovery and machine learning techniques to cope with higher
dimensional and complex datasets (Causal Disentangled Representation Learning - CDRL) have
shown promising results. Within SimCardioTest we propose to take a step further and investigate
the possibility of extending CDRL to the multimodal scenario, thus taking advantage of multiple data
sources to better characterize a given observed phenomena (drug-induced Torsade-de-Pointes). We
show that our CDRL strategy, fully unsupervised, were effective in building an informative latent
representation of the original multimodal data. Several challenges arise from this first study,
including the possibility of modeling the causal relationships at multiple levels of granularity, and
use the estimated latent causal graph to perform inference and prediction under varying conditions.

The results described in D5.5 have already been published and presented at international
conferences:

e Section 2.1: Pannetier, Valentin, et al. "Towards validation of two computational models of
artificial pacemakers" Q. Z. Radomir Chabiniok, Functional Imaging and Modeling of the
Heart. Springer Nature Switzerland. Available July, 27th 2025. 2025. (ref. [9])

e Section 2.2: Al-Ali, Safaa, et al. "Cardiac Electromechanical Model Sensitivity Analysis using
Causal Discovery", Functional Imaging and Modeling of the Heart. Springer Nature
Switzerland. Available July, 27th 2025. 2025. (ref. [12])

e Section 3: Saiz-Vive, Marta, et al. "Digital twin integrating clinical, morphological and
hemodynamic data to identify stroke risk factors." npj Digital Medicine 8.1 (2025): 1-14. (ref.
[26])

e Section 4.1: Al-Ali, Safaa, et al. "A causal discovery approach to streamline ionic currents
selection to improve drug-induced tdp risk assessment." 2023 Computing in Cardiology
(CinC). Vol. 50. IEEE, 2023. (ref. [42])

e Section 4.2: Al-Ali, Safaa, et al. "Assessing lonic Current Blockades and Electromechanical
Biomarkers’ Interrelations Through a Novel Multi-Channel Causal Variational
Autoencoder.". 2024 Computing in Cardiology (CinC). IEEE, 2024. (ref. [43])
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